Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.03040
Cited By
Deep Network Approximation for Smooth Functions
9 January 2020
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Network Approximation for Smooth Functions"
50 / 152 papers shown
Title
Approximation bounds for norm constrained neural networks with applications to regression and GANs
Yuling Jiao
Yang Wang
Yunfei Yang
34
19
0
24 Jan 2022
Theoretical Exploration of Solutions of Feedforward ReLU Networks
Changcun Huang
14
4
0
24 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Risk bounds for aggregated shallow neural networks using Gaussian prior
L. Tinsi
A. Dalalyan
BDL
12
7
0
21 Dec 2021
Wasserstein Generative Learning of Conditional Distribution
Shiao Liu
Xingyu Zhou
Yuling Jiao
Jian Huang
GAN
14
21
0
19 Dec 2021
Approximation of functions with one-bit neural networks
C. S. Güntürk
Weilin Li
17
8
0
16 Dec 2021
On the rate of convergence of a classifier based on a Transformer encoder
Iryna Gurevych
Michael Kohler
Gözde Gül Sahin
6
11
0
29 Nov 2021
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
15
9
0
15 Nov 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Stationary Density Estimation of Itô Diffusions Using Deep Learning
Yiqi Gu
J. Harlim
Senwei Liang
Haizhao Yang
18
12
0
09 Sep 2021
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
20
4
0
20 Jul 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
43
36
0
06 Jul 2021
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
13
34
0
22 Jun 2021
Solving PDEs on Unknown Manifolds with Machine Learning
Senwei Liang
Shixiao W. Jiang
J. Harlim
Haizhao Yang
AI4CE
28
16
0
12 Jun 2021
Calibrating multi-dimensional complex ODE from noisy data via deep neural networks
Kexuan Li
Fangfang Wang
Ruiqi Liu
Fan Yang
Zuofeng Shang
24
7
0
07 Jun 2021
Universal Regular Conditional Distributions
Anastasis Kratsios
15
3
0
17 May 2021
Sparsity-Probe: Analysis tool for Deep Learning Models
Ido Ben-Shaul
S. Dekel
18
4
0
14 May 2021
ReLU Deep Neural Networks from the Hierarchical Basis Perspective
Juncai He
Lin Li
Jinchao Xu
AI4CE
20
30
0
10 May 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
28
50
0
14 Apr 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
24
20
0
21 Mar 2021
Evolutional Deep Neural Network
Yifan Du
T. Zaki
16
68
0
18 Mar 2021
Deep Neural Networks with ReLU-Sine-Exponential Activations Break Curse of Dimensionality in Approximation on Hölder Class
Yuling Jiao
Yanming Lai
Xiliang Lu
Fengru Wang
J. Yang
Yuanyuan Yang
6
3
0
28 Feb 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
101
115
0
28 Feb 2021
Quantitative approximation results for complex-valued neural networks
A. Caragea
D. Lee
J. Maly
G. Pfander
F. Voigtlaender
11
5
0
25 Feb 2021
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
21
7
0
30 Jan 2021
On the capacity of deep generative networks for approximating distributions
Yunfei Yang
Zhen Li
Yang Wang
17
28
0
29 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
28
21
0
13 Jan 2021
Strong overall error analysis for the training of artificial neural networks via random initializations
Arnulf Jentzen
Adrian Riekert
6
3
0
15 Dec 2020
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
34
29
0
11 Dec 2020
The universal approximation theorem for complex-valued neural networks
F. Voigtlaender
14
62
0
06 Dec 2020
On the rate of convergence of a deep recurrent neural network estimate in a regression problem with dependent data
Michael Kohler
A. Krzyżak
8
12
0
31 Oct 2020
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
19
114
0
25 Oct 2020
Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
C. Marcati
J. Opschoor
P. Petersen
Christoph Schwab
6
29
0
23 Oct 2020
Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice
Andrii Babii
Xi Chen
Eric Ghysels
Rohit Kumar
FaML
11
10
0
16 Oct 2020
Approximating smooth functions by deep neural networks with sigmoid activation function
S. Langer
19
66
0
08 Oct 2020
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
125
0
31 Jul 2020
On Representing (Anti)Symmetric Functions
Marcus Hutter
9
22
0
30 Jul 2020
Maximum-and-Concatenation Networks
Xingyu Xie
Hao Kong
Jianlong Wu
Wayne Zhang
Guangcan Liu
Zhouchen Lin
75
2
0
09 Jul 2020
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Tao Luo
Haizhao Yang
21
73
0
28 Jun 2020
Deep Network with Approximation Error Being Reciprocal of Width to Power of Square Root of Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
6
7
0
22 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
26
14
0
25 May 2020
On Deep Instrumental Variables Estimate
Ruiqi Liu
Zuofeng Shang
Guang Cheng
21
25
0
30 Apr 2020
Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices
Calypso Herrera
Florian Krach
Anastasis Kratsios
P. Ruyssen
Josef Teichmann
20
2
0
28 Apr 2020
Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks
Moritz Geist
P. Petersen
Mones Raslan
R. Schneider
Gitta Kutyniok
18
83
0
25 Apr 2020
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
Yulong Lu
Jianfeng Lu
10
19
0
19 Apr 2020
The gap between theory and practice in function approximation with deep neural networks
Ben Adcock
N. Dexter
7
93
0
16 Jan 2020
Machine Learning for Prediction with Missing Dynamics
J. Harlim
Shixiao W. Jiang
Senwei Liang
Haizhao Yang
AI4CE
12
60
0
13 Oct 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
18
182
0
13 Jun 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
17
138
0
05 May 2019
Previous
1
2
3
4
Next