Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.03040
Cited By
Deep Network Approximation for Smooth Functions
9 January 2020
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Network Approximation for Smooth Functions"
50 / 152 papers shown
Title
Super-fast rates of convergence for Neural Networks Classifiers under the Hard Margin Condition
Nathanael Tepakbong
Ding-Xuan Zhou
Xiang Zhou
33
0
0
13 May 2025
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Zhaiming Shen
Alex Havrilla
Rongjie Lai
A. Cloninger
Wenjing Liao
39
0
0
06 May 2025
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
59
0
0
21 Apr 2025
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
Yuling Jiao
Yanming Lai
Yang Wang
Bokai Yan
34
0
0
18 Apr 2025
Approximation Bounds for Transformer Networks with Application to Regression
Yuling Jiao
Yanming Lai
Defeng Sun
Yang Wang
Bokai Yan
29
0
0
16 Apr 2025
Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
Xuran Meng
Yi Li
BDL
25
0
0
12 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
68
0
0
11 Apr 2025
Nonlocal techniques for the analysis of deep ReLU neural network approximations
Cornelia Schneider
Mario Ullrich
Jan Vybiral
18
0
0
07 Apr 2025
Approximation properties of neural ODEs
Arturo De Marinis
Davide Murari
E. Celledoni
Nicola Guglielmi
B. Owren
Francesco Tudisco
39
0
0
19 Mar 2025
Finite Samples for Shallow Neural Networks
Yu Xia
Zhiqiang Xu
43
0
0
17 Mar 2025
Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
52
0
0
26 Feb 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
51
0
0
07 Feb 2025
Learning with Noisy Labels: the Exploration of Error Bounds in Classification
Haixia Liu
Boxiao Li
Can Yang
Yang Wang
33
0
0
28 Jan 2025
Higher Order Approximation Rates for ReLU CNNs in Korobov Spaces
Yuwen Li
Guozhi Zhang
43
1
0
20 Jan 2025
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
CML
OOD
70
2
0
31 Dec 2024
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
45
1
0
31 Dec 2024
A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
FedML
18
1
0
28 Oct 2024
Simultaneously Solving FBSDEs with Neural Operators of Logarithmic Depth, Constant Width, and Sub-Linear Rank
Takashi Furuya
Anastasis Kratsios
30
1
0
18 Oct 2024
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
37
9
0
02 Oct 2024
Neural Scaling Laws of Deep ReLU and Deep Operator Network: A Theoretical Study
Hao Liu
Zecheng Zhang
Wenjing Liao
Hayden Schaeffer
23
1
0
01 Oct 2024
Frequency-adaptive Multi-scale Deep Neural Networks
Jizu Huang
Rukang You
Tao Zhou
AI4CE
25
1
0
28 Sep 2024
Approximation Bounds for Recurrent Neural Networks with Application to Regression
Yuling Jiao
Yang Wang
Bokai Yan
23
1
0
09 Sep 2024
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
59
2
0
02 Sep 2024
Time Series Generative Learning with Application to Brain Imaging Analysis
Zhenghao Li
Sanyou Wu
Long Feng
MedIm
33
0
0
19 Jul 2024
Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation
Luwei Sun
Dongrui Shen
Han Feng
29
2
0
16 Jul 2024
Structured and Balanced Multi-component and Multi-layer Neural Networks
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
32
1
0
30 Jun 2024
On the growth of the parameters of approximating ReLU neural networks
Erion Morina
Martin Holler
25
0
0
21 Jun 2024
On the estimation rate of Bayesian PINN for inverse problems
Yi Sun
Debarghya Mukherjee
Yves Atchadé
PINN
72
1
0
21 Jun 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
55
3
0
05 Jun 2024
On Non-asymptotic Theory of Recurrent Neural Networks in Temporal Point Processes
Zhiheng Chen
Guanhua Fang
Wen Yu
30
0
0
02 Jun 2024
Sifting through the Noise: A Survey of Diffusion Probabilistic Models and Their Applications to Biomolecules
Trevor Norton
Debswapna Bhattacharya
MedIm
DiffM
47
2
0
31 May 2024
Enhancing Accuracy in Generative Models via Knowledge Transfer
Xinyu Tian
Xiaotong Shen
39
2
0
27 May 2024
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
26
2
0
23 May 2024
Model Free Prediction with Uncertainty Assessment
Yuling Jiao
Lican Kang
Jin Liu
Heng Peng
Heng Zuo
DiffM
34
0
0
21 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
36
1
0
19 May 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
42
13
0
13 Apr 2024
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLM
MedIm
DiffM
37
48
0
11 Apr 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
37
4
0
04 Apr 2024
On the rates of convergence for learning with convolutional neural networks
Yunfei Yang
Han Feng
Ding-Xuan Zhou
40
3
0
25 Mar 2024
Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty in Scientific Machine Learning
Farhad Pourkamali-Anaraki
Jamal F. Husseini
Scott E. Stapleton
UD
48
2
0
21 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
Yahong Yang
Juncai He
AI4CE
26
7
0
31 Jan 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
26
5
0
19 Jan 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Namjoon Suh
Guang Cheng
MedIm
22
12
0
14 Jan 2024
Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network
Zhao Ding
Chenguang Duan
Yuling Jiao
Jerry Zhijian Yang
25
1
0
09 Jan 2024
Deep Neural Networks and Finite Elements of Any Order on Arbitrary Dimensions
Juncai He
Jinchao Xu
25
7
0
21 Dec 2023
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
27
1
0
19 Dec 2023
Optimal Deep Neural Network Approximation for Korobov Functions with respect to Sobolev Norms
Yahong Yang
Yulong Lu
34
3
0
08 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
37
4
0
23 Oct 2023
On Representation Complexity of Model-based and Model-free Reinforcement Learning
Hanlin Zhu
Baihe Huang
Stuart Russell
OffRL
25
3
0
03 Oct 2023
1
2
3
4
Next