Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09018
Cited By
Scalable Second Order Optimization for Deep Learning
20 February 2020
Rohan Anil
Vineet Gupta
Tomer Koren
Kevin Regan
Y. Singer
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Second Order Optimization for Deep Learning"
19 / 19 papers shown
Title
PETScML: Second-order solvers for training regression problems in Scientific Machine Learning
Stefano Zampini
Umberto Zerbinati
George Turkyyiah
David E. Keyes
35
4
0
18 Mar 2024
Scalable Stochastic Gradient Riemannian Langevin Dynamics in Non-Diagonal Metrics
Hanlin Yu
M. Hartmann
Bernardo Williams
Arto Klami
BDL
14
4
0
09 Mar 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
21
60
0
17 Nov 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
29
47
0
13 Oct 2022
On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
Rohan Anil
S. Gadanho
Danya Huang
Nijith Jacob
Zhuoshu Li
...
Cristina Pop
Kevin Regan
G. Shamir
Rakesh Shivanna
Qiqi Yan
3DV
10
41
0
12 Sep 2022
Hessian-Free Second-Order Adversarial Examples for Adversarial Learning
Yaguan Qian
Yu-qun Wang
Bin Wang
Zhaoquan Gu
Yu-Shuang Guo
Wassim Swaileh
AAML
39
3
0
04 Jul 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive Step Size
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
ODL
15
0
0
30 Dec 2021
Real-time Neural Radiance Caching for Path Tracing
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
3DH
AI4CE
16
155
0
23 Jun 2021
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
16
29
0
02 Jun 2021
AsymptoticNG: A regularized natural gradient optimization algorithm with look-ahead strategy
Zedong Tang
Fenlong Jiang
Junke Song
Maoguo Gong
Hao Li
F. Yu
Zidong Wang
Min Wang
ODL
15
1
0
24 Dec 2020
Second-order Neural Network Training Using Complex-step Directional Derivative
Siyuan Shen
Tianjia Shao
Kun Zhou
Chenfanfu Jiang
Feng Luo
Yin Yang
ODL
11
2
0
15 Sep 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
32
161
0
03 Jul 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao-quan Song
Omri Weinstein
ODL
13
81
0
20 Jun 2020
Daydream: Accurately Estimating the Efficacy of Optimizations for DNN Training
Hongyu Zhu
Amar Phanishayee
Gennady Pekhimenko
13
52
0
05 Jun 2020
PyHessian: Neural Networks Through the Lens of the Hessian
Z. Yao
A. Gholami
Kurt Keutzer
Michael W. Mahoney
ODL
8
288
0
16 Dec 2019
Zap Q-Learning With Nonlinear Function Approximation
Shuhang Chen
Adithya M. Devraj
Fan Lu
Ana Bušić
Sean P. Meyn
17
20
0
11 Oct 2019
An Adaptive Remote Stochastic Gradient Method for Training Neural Networks
Yushu Chen
Hao Jing
Wenlai Zhao
Zhiqiang Liu
H. Fu
Lián Qiao
Wei Xue
Guangwen Yang
ODL
19
2
0
04 May 2019
OverSketched Newton: Fast Convex Optimization for Serverless Systems
Vipul Gupta
S. Kadhe
T. Courtade
Michael W. Mahoney
K. Ramchandran
16
33
0
21 Mar 2019
1