Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10542
Cited By
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
24 February 2020
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence"
50 / 112 papers shown
Title
Adaptive Federated Learning with Auto-Tuned Clients
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
FedML
40
6
0
19 Jun 2023
Prodigy: An Expeditiously Adaptive Parameter-Free Learner
Konstantin Mishchenko
Aaron Defazio
ODL
28
55
0
09 Jun 2023
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
Chen Fan
Gaspard Choné-Ducasse
Mark W. Schmidt
Christos Thrampoulidis
19
3
0
30 May 2023
DoWG Unleashed: An Efficient Universal Parameter-Free Gradient Descent Method
Ahmed Khaled
Konstantin Mishchenko
Chi Jin
ODL
22
22
0
25 May 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
31
0
0
23 May 2023
MoMo: Momentum Models for Adaptive Learning Rates
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
30
10
0
12 May 2023
Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition
Chen Fan
Christos Thrampoulidis
Mark W. Schmidt
20
2
0
02 Apr 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits
Yue Kang
Cho-Jui Hsieh
T. C. Lee
24
1
0
18 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
24
56
0
08 Feb 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Nicolas Le Roux
46
5
0
06 Feb 2023
FedExP: Speeding Up Federated Averaging via Extrapolation
Divyansh Jhunjhunwala
Shiqiang Wang
Gauri Joshi
FedML
19
52
0
23 Jan 2023
A Stochastic Proximal Polyak Step Size
Fabian Schaipp
Robert Mansel Gower
M. Ulbrich
14
12
0
12 Jan 2023
Optimizing the Performative Risk under Weak Convexity Assumptions
Yulai Zhao
19
5
0
02 Sep 2022
Critical Bach Size Minimizes Stochastic First-Order Oracle Complexity of Deep Learning Optimizer using Hyperparameters Close to One
Hideaki Iiduka
ODL
27
4
0
21 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
33
7
0
10 Aug 2022
Improved Policy Optimization for Online Imitation Learning
J. Lavington
Sharan Vaswani
Mark W. Schmidt
OffRL
15
6
0
29 Jul 2022
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
21
13
0
17 Jul 2022
Theoretical analysis of Adam using hyperparameters close to one without Lipschitz smoothness
Hideaki Iiduka
15
5
0
27 Jun 2022
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Aaron Defazio
Baoyu Zhou
Lin Xiao
ODL
14
5
0
14 Jun 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
32
2
0
13 Jun 2022
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Junchi Yang
Xiang Li
Niao He
ODL
27
22
0
01 Jun 2022
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
17
41
0
04 May 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
35
1
0
28 Apr 2022
Learning to Accelerate by the Methods of Step-size Planning
Hengshuai Yao
21
0
0
01 Apr 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Mirror Descent Strikes Again: Optimal Stochastic Convex Optimization under Infinite Noise Variance
Nuri Mert Vural
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
15
23
0
23 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Minimization of Stochastic First-order Oracle Complexity of Adaptive Methods for Nonconvex Optimization
Hideaki Iiduka
13
0
0
14 Dec 2021
Randomized Stochastic Gradient Descent Ascent
Othmane Sebbouh
Marco Cuturi
Gabriel Peyré
118
7
0
25 Nov 2021
Convergence Rates for the MAP of an Exponential Family and Stochastic Mirror Descent -- an Open Problem
Rémi Le Priol
Frederik Kunstner
Damien Scieur
Simon Lacoste-Julien
11
1
0
12 Nov 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
31
30
0
28 Oct 2021
Accelerated Almost-Sure Convergence Rates for Nonconvex Stochastic Gradient Descent using Stochastic Learning Rates
Theodoros Mamalis
D. Stipanović
R. Tao
21
2
0
25 Oct 2021
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
Sharan Vaswani
Benjamin Dubois-Taine
Reza Babanezhad
48
11
0
21 Oct 2021
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
Majid Jahani
S. Rusakov
Zheng Shi
Peter Richtárik
Michael W. Mahoney
Martin Takávc
ODL
8
25
0
11 Sep 2021
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning Optimizer is a Rational Function of Batch Size
Hideaki Iiduka
13
1
0
26 Aug 2021
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
21
53
0
30 Jun 2021
On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging
C. J. Li
Yaodong Yu
Nicolas Loizou
Gauthier Gidel
Yi-An Ma
Nicolas Le Roux
Michael I. Jordan
23
22
0
30 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
24
17
0
22 Jun 2021
Adaptive Learning Rate and Momentum for Training Deep Neural Networks
Zhiyong Hao
Yixuan Jiang
Huihua Yu
H. Chiang
ODL
14
9
0
22 Jun 2021
Comment on Stochastic Polyak Step-Size: Performance of ALI-G
Leonard Berrada
Andrew Zisserman
M. P. Kumar
13
4
0
20 May 2021
Scale Invariant Monte Carlo under Linear Function Approximation with Curvature based step-size
Rahul Madhavan
Hemant Makwana
11
0
0
15 Apr 2021
Multi-modal anticipation of stochastic trajectories in a dynamic environment with Conditional Variational Autoencoders
Albert Dulian
J. Murray
26
4
0
05 Mar 2021
A Probabilistically Motivated Learning Rate Adaptation for Stochastic Optimization
Filip de Roos
Carl Jidling
A. Wills
Thomas B. Schon
Philipp Hennig
15
3
0
22 Feb 2021
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
Zheng Shi
Abdurakhmon Sadiev
Nicolas Loizou
Peter Richtárik
Martin Takávc
ODL
32
13
0
19 Feb 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Simon Lacoste-Julien
13
17
0
18 Feb 2021
On the Convergence of Step Decay Step-Size for Stochastic Optimization
Xiaoyu Wang
Sindri Magnússon
M. Johansson
55
23
0
18 Feb 2021
An Adaptive Stochastic Sequential Quadratic Programming with Differentiable Exact Augmented Lagrangians
Sen Na
M. Anitescu
Mladen Kolar
12
41
0
10 Feb 2021
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
23
76
0
11 Dec 2020
Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution Satellite Imagery
I. Laradji
Pau Rodríguez López
F. Kalaitzis
David Vazquez
Ross Young
E. Davey
Alexandre Lacoste
19
19
0
14 Nov 2020
Previous
1
2
3
Next