ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10542
  4. Cited By
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence

Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence

24 February 2020
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
ArXivPDFHTML

Papers citing "Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence"

12 / 112 papers shown
Title
Weight-Sharing Neural Architecture Search: A Battle to Shrink the
  Optimization Gap
Weight-Sharing Neural Architecture Search: A Battle to Shrink the Optimization Gap
Lingxi Xie
Xin Chen
Kaifeng Bi
Longhui Wei
Yuhui Xu
...
Lanfei Wang
Anxiang Xiao
Jianlong Chang
Xiaopeng Zhang
Qi Tian
ViT
35
108
0
04 Aug 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
28
50
0
08 Jul 2020
A Weakly Supervised Consistency-based Learning Method for COVID-19
  Segmentation in CT Images
A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images
I. Laradji
Pau Rodríguez López
Oscar Manas
Keegan Lensink
M. Law
Lironne Kurzman
William Parker
David Vazquez
Derek Nowrouzezahrai
15
84
0
04 Jul 2020
LOOC: Localize Overlapping Objects with Count Supervision
LOOC: Localize Overlapping Objects with Count Supervision
I. Laradji
Rafael Pardiñas
Pau Rodríguez López
David Vazquez
17
10
0
03 Jul 2020
Unified Analysis of Stochastic Gradient Methods for Composite Convex and
  Smooth Optimization
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
Ahmed Khaled
Othmane Sebbouh
Nicolas Loizou
Robert Mansel Gower
Peter Richtárik
11
45
0
20 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Adaptive Gradient Methods Converge Faster with Over-Parameterization
  (but you should do a line-search)
Adaptive Gradient Methods Converge Faster with Over-Parameterization (but you should do a line-search)
Sharan Vaswani
I. Laradji
Frederik Kunstner
S. Meng
Mark W. Schmidt
Simon Lacoste-Julien
19
27
0
11 Jun 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
39
491
0
23 Mar 2020
Training Neural Networks for and by Interpolation
Training Neural Networks for and by Interpolation
Leonard Berrada
Andrew Zisserman
M. P. Kumar
3DH
8
60
0
13 Jun 2019
L4: Practical loss-based stepsize adaptation for deep learning
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
36
63
0
14 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
136
1,198
0
16 Aug 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
Previous
123