Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11328
Cited By
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
26 February 2020
Zitong Yang
Yaodong Yu
Chong You
Jacob Steinhardt
Yi-An Ma
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rethinking Bias-Variance Trade-off for Generalization of Neural Networks"
31 / 31 papers shown
Title
On the Relationship Between Double Descent of CNNs and Shape/Texture Bias Under Learning Process
Shun Iwase
Shuya Takahashi
Nakamasa Inoue
Rio Yokota
Ryo Nakamura
Hirokatsu Kataoka
74
0
0
04 Mar 2025
Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Younggun Kim
Beomsik Cho
Seonghoon Ryoo
Soomok Lee
3DPC
99
0
0
27 Jan 2025
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
33
2
0
09 Oct 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
43
1
0
18 Apr 2024
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Divin Yan
Gengchen Wei
Chen Yang
Shengzhong Zhang
Zengfeng Huang
AI4CE
38
11
0
28 Oct 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
21
1
0
08 Jun 2023
Double Descent of Discrepancy: A Task-, Data-, and Model-Agnostic Phenomenon
Yi-Xiao Luo
Bin Dong
26
0
0
25 May 2023
Understanding Difficulty-based Sample Weighting with a Universal Difficulty Measure
Xiaoling Zhou
Ou Wu
Weiyao Zhu
Ziyang Liang
27
2
0
12 Jan 2023
A Unified Theory of Diversity in Ensemble Learning
Danny Wood
Tingting Mu
Andrew M. Webb
Henry W. J. Reeve
M. Luján
Gavin Brown
UQCV
18
41
0
10 Jan 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
40
10
0
01 Dec 2022
Understanding the double descent curve in Machine Learning
Luis Sa-Couto
J. M. Ramos
Miguel Almeida
Andreas Wichert
16
1
0
18 Nov 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
56
10
0
21 Sep 2022
Membership Inference Attacks and Generalization: A Causal Perspective
Teodora Baluta
Shiqi Shen
S. Hitarth
Shruti Tople
Prateek Saxena
OOD
MIACV
40
18
0
18 Sep 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
69
27
0
17 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
25
11
0
03 Jun 2022
Towards Size-Independent Generalization Bounds for Deep Operator Nets
Pulkit Gopalani
Sayar Karmakar
Dibyakanti Kumar
Anirbit Mukherjee
AI4CE
24
5
0
23 May 2022
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
36
124
0
11 Apr 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
22
97
0
02 Mar 2022
Understanding the bias-variance tradeoff of Bregman divergences
Ben Adlam
Neha Gupta
Zelda E. Mariet
Jamie Smith
UQCV
UD
17
6
0
08 Feb 2022
An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks
Dominik Muller
Iñaki Soto Rey
Frank Kramer
16
56
0
27 Jan 2022
Early Stopping for Deep Image Prior
Hengkang Wang
Taihui Li
Zhong Zhuang
Tiancong Chen
Hengyue Liang
Ju Sun
18
62
0
11 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
32
22
0
07 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
29
92
0
04 Nov 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
22
95
0
10 Oct 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
146
370
0
09 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
34
172
0
23 Apr 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
1