Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.11440
Cited By
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
23 April 2020
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs"
39 / 89 papers shown
Title
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
J. W. Vaughan
R. Caruana
KELM
69
27
0
30 Jun 2022
RES: A Robust Framework for Guiding Visual Explanation
Yuyang Gao
Tong Sun
Guangji Bai
Siyi Gu
S. Hong
Liang Zhao
FAtt
AAML
XAI
34
32
0
27 Jun 2022
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI
Q. V. Liao
Yunfeng Zhang
Ronny Luss
Finale Doshi-Velez
Amit Dhurandhar
26
81
0
22 Jun 2022
Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations
Jessica Dai
Sohini Upadhyay
Ulrich Aïvodji
Stephen H. Bach
Himabindu Lakkaraju
53
57
0
15 May 2022
Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts
Ashley Suh
G. Appleby
Erik W. Anderson
Luca A. Finelli
Remco Chang
Dylan Cashman
38
8
0
11 May 2022
Sensible AI: Re-imagining Interpretability and Explainability using Sensemaking Theory
Harmanpreet Kaur
Eytan Adar
Eric Gilbert
Cliff Lampe
16
59
0
10 May 2022
Interactive Model Cards: A Human-Centered Approach to Model Documentation
Anamaria Crisan
Margaret Drouhard
Jesse Vig
Nazneen Rajani
HAI
42
87
0
05 May 2022
Artificial Concepts of Artificial Intelligence: Institutional Compliance and Resistance in AI Startups
Amy A. Winecoff
E. A. Watkins
35
17
0
02 Mar 2022
The Need for Interpretable Features: Motivation and Taxonomy
Alexandra Zytek
Ignacio Arnaldo
Dongyu Liu
Laure Berti-Equille
K. Veeramachaneni
FAtt
XAI
15
13
0
23 Feb 2022
Machine Explanations and Human Understanding
Chacha Chen
Shi Feng
Amit Sharma
Chenhao Tan
35
24
0
08 Feb 2022
Aligning Eyes between Humans and Deep Neural Network through Interactive Attention Alignment
Yuyang Gao
Tong Sun
Liang Zhao
Sungsoo Ray Hong
HAI
30
37
0
06 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
194
186
0
03 Feb 2022
GAM Changer: Editing Generalized Additive Models with Interactive Visualization
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
Jennifer Wortman Vaughan
R. Caruana
KELM
19
24
0
06 Dec 2021
Learning Optimal Predictive Checklists
Haoran Zhang
Q. Morris
Berk Ustun
Marzyeh Ghassemi
26
11
0
02 Dec 2021
Hierarchical Decision Ensembles- An inferential framework for uncertain Human-AI collaboration in forensic examinations
Ganesh Krishnan
H. Hofmann
17
0
0
31 Oct 2021
IAC: A Framework for Enabling Patient Agency in the Use of AI-Enabled Healthcare
Chinasa T. Okolo
Michelle González Amador
24
0
0
29 Oct 2021
Human-Centered Explainable AI (XAI): From Algorithms to User Experiences
Q. V. Liao
R. Varshney
23
225
0
20 Oct 2021
Machine Learning Practices Outside Big Tech: How Resource Constraints Challenge Responsible Development
Aspen K. Hopkins
Serena Booth
29
45
0
06 Oct 2021
Explanation Strategies as an Empirical-Analytical Lens for Socio-Technical Contextualization of Machine Learning Interpretability
J. Benjamin
C. Kinkeldey
Claudia Muller-Birn
Tim Korjakow
Eva-Maria Herbst
79
8
0
24 Sep 2021
AdViCE: Aggregated Visual Counterfactual Explanations for Machine Learning Model Validation
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
CML
HAI
24
21
0
12 Sep 2021
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
56
28
0
27 Apr 2021
FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
Angelos Chatzimparmpas
Rafael M. Martins
Kostiantyn Kucher
Andreas Kerren
37
22
0
26 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
32
29
0
10 Mar 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
45
25
0
17 Feb 2021
EUCA: the End-User-Centered Explainable AI Framework
Weina Jin
Jianyu Fan
D. Gromala
Philippe Pasquier
Ghassan Hamarneh
40
24
0
04 Feb 2021
Model-agnostic interpretation by visualization of feature perturbations
Wilson E. Marcílio-Jr
D. M. Eler
Fabricio A. Breve
AAML
11
1
0
26 Jan 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
Dissonance Between Human and Machine Understanding
Zijian Zhang
Jaspreet Singh
U. Gadiraju
Avishek Anand
59
74
0
18 Jan 2021
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
62
91
0
13 Jan 2021
Expanding Explainability: Towards Social Transparency in AI systems
Upol Ehsan
Q. V. Liao
Michael J. Muller
Mark O. Riedl
Justin D. Weisz
43
394
0
12 Jan 2021
Fits and Starts: Enterprise Use of AutoML and the Role of Humans in the Loop
Anamaria Crisan
Brittany Fiore-Gartland
31
50
0
12 Jan 2021
Modeling Disclosive Transparency in NLP Application Descriptions
Michael Stephen Saxon
Sharon Levy
Xinyi Wang
Alon Albalak
Jiaming Ji
27
7
0
02 Jan 2021
When Does Uncertainty Matter?: Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making
S. McGrath
Parth Mehta
Alexandra Zytek
Isaac Lage
Himabindu Lakkaraju
UD
16
25
0
12 Nov 2020
Explainable Machine Learning for Public Policy: Use Cases, Gaps, and Research Directions
Kasun Amarasinghe
Kit Rodolfa
Hemank Lamba
Rayid Ghani
ELM
XAI
29
51
0
27 Oct 2020
Towards Evaluating Exploratory Model Building Process with AutoML Systems
Sungsoo Ray Hong
Sonia Castelo
Vito DÓrazio
Christopher Bethune
Aécio Santos
Scott Langevin
D. Jonker
E. Bertini
J. Freire
HAI
17
4
0
01 Sep 2020
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Tulio Ribeiro
Daniel S. Weld
42
584
0
26 Jun 2020
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
178
311
0
05 Sep 2019
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
195
742
0
13 Dec 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,698
0
28 Feb 2017
Previous
1
2