ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10108
  4. Cited By
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
v1v2 (latest)

Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness

17 June 2020
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness"

50 / 362 papers shown
Title
Uncertainty Awareness of Large Language Models Under Code Distribution
  Shifts: A Benchmark Study
Uncertainty Awareness of Large Language Models Under Code Distribution Shifts: A Benchmark Study
Yufei Li
Simin Chen
Yanghong Guo
Wei Yang
Yue Dong
Cong Liu
UQCV
87
3
0
12 Jan 2024
Wasserstein Distance-based Expansion of Low-Density Latent Regions for
  Unknown Class Detection
Wasserstein Distance-based Expansion of Low-Density Latent Regions for Unknown Class Detection
Prakash Mallick
Feras Dayoub
Jamie Sherrah
78
1
0
10 Jan 2024
Generative Posterior Networks for Approximately Bayesian Epistemic
  Uncertainty Estimation
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
UQCV
61
0
0
29 Dec 2023
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate
  Reward Hacking
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
Jacob Eisenstein
Chirag Nagpal
Alekh Agarwal
Ahmad Beirami
Alex DÁmour
...
Katherine Heller
Stephen Pfohl
Deepak Ramachandran
Peter Shaw
Jonathan Berant
161
116
0
14 Dec 2023
Thermodynamic Computing System for AI Applications
Thermodynamic Computing System for AI Applications
Denis Melanson
M. A. Khater
Maxwell Aifer
Kaelan Donatella
Max Hunter Gordon
Thomas Dybdahl Ahle
Gavin Crooks
Antonio J. Martinez
Faris M. Sbahi
Patrick J. Coles
AI4CE
90
18
0
08 Dec 2023
Transferable Candidate Proposal with Bounded Uncertainty
Transferable Candidate Proposal with Bounded Uncertainty
Kyeongryeol Go
Kye-Hyeon Kim
113
1
0
07 Dec 2023
Uncertainty Estimation on Sequential Labeling via Uncertainty
  Transmission
Uncertainty Estimation on Sequential Labeling via Uncertainty Transmission
Jianfeng He
Linlin Yu
Shuo Lei
Chang-Tien Lu
Feng Chen
UQLM
93
10
0
15 Nov 2023
Introducing an Improved Information-Theoretic Measure of Predictive
  Uncertainty
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
99
14
0
14 Nov 2023
Improvements on Uncertainty Quantification for Node Classification via
  Distance-Based Regularization
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
90
5
0
10 Nov 2023
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
  Networks
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural Networks
Jiarong Xu
Renhong Huang
Xin Jiang
Yuxuan Cao
Carl Yang
Chunping Wang
Yang Yang
AI4CE
170
16
0
02 Nov 2023
Uncertainty quantification and out-of-distribution detection using
  surjective normalizing flows
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
100
1
0
01 Nov 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
115
36
0
09 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation
  Smoothness
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
116
7
0
04 Oct 2023
Uncertainty Aware Deep Learning for Particle Accelerators
Uncertainty Aware Deep Learning for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Karthik Somayaji
47
2
0
25 Sep 2023
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
  for Earth System Science Applications
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications
John S. Schreck
D. Gagne
Charlie Becker
William E. Chapman
K. Elmore
...
Vanessa M. Pryzbylo
Jacob T. Radford
B. Saavedra
Justin Willson
Christopher D. Wirz
BDLUDOODUQCVEDL
75
11
0
22 Sep 2023
LMC: Large Model Collaboration with Cross-assessment for Training-Free
  Open-Set Object Recognition
LMC: Large Model Collaboration with Cross-assessment for Training-Free Open-Set Object Recognition
Haoxuan Qu
Xiaofei Hui
Yujun Cai
Jun Liu
175
11
0
22 Sep 2023
PAGER: A Framework for Failure Analysis of Deep Regression Models
PAGER: A Framework for Failure Analysis of Deep Regression Models
Jayaraman J. Thiagarajan
V. Narayanaswamy
Puja Trivedi
Rushil Anirudh
98
0
0
20 Sep 2023
Adversarial Attacks Against Uncertainty Quantification
Adversarial Attacks Against Uncertainty Quantification
Emanuele Ledda
Daniele Angioni
Giorgio Piras
Giorgio Fumera
Battista Biggio
Fabio Roli
AAML
117
3
0
19 Sep 2023
Closing the Loop on Runtime Monitors with Fallback-Safe MPC
Closing the Loop on Runtime Monitors with Fallback-Safe MPC
Rohan Sinha
Edward Schmerling
Marco Pavone
261
14
0
15 Sep 2023
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble
  Architecture
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble Architecture
S. Qutub
Neslihan Kose
Rafael Rosales
Michael Paulitsch
Korbinian Hagn
Florian Geissler
Yang Peng
Gereon Hinz
Alois C. Knoll
124
3
0
14 Sep 2023
Flexible Visual Recognition by Evidential Modeling of Confusion and
  Ignorance
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
Lei Fan
Bo Liu
Haoxiang Li
Ying Wu
Gang Hua
99
5
0
14 Sep 2023
Enhancing Trustworthiness in ML-Based Network Intrusion Detection with
  Uncertainty Quantification
Enhancing Trustworthiness in ML-Based Network Intrusion Detection with Uncertainty Quantification
Jacopo Talpini
Fabio Sartori
Marco Savi
101
6
0
05 Sep 2023
RankMixup: Ranking-Based Mixup Training for Network Calibration
RankMixup: Ranking-Based Mixup Training for Network Calibration
Jongyoun Noh
Hyekang Park
Junghyup Lee
Bumsub Ham
UQCV
102
13
0
23 Aug 2023
Deep Evidential Learning for Bayesian Quantile Regression
Deep Evidential Learning for Bayesian Quantile Regression
F. B. Hüttel
Filipe Rodrigues
Francisco Câmara Pereira
UDEDLBDLUQCV
86
7
0
21 Aug 2023
Unsupervised Out-of-Distribution Dialect Detection with Mahalanobis
  Distance
Unsupervised Out-of-Distribution Dialect Detection with Mahalanobis Distance
Sourya Dipta Das
Yash Vadi
Abhishek Unnam
Kuldeep Yadav
53
1
0
09 Aug 2023
Efficient Bayesian Optimization with Deep Kernel Learning and
  Transformer Pre-trained on Multiple Heterogeneous Datasets
Efficient Bayesian Optimization with Deep Kernel Learning and Transformer Pre-trained on Multiple Heterogeneous Datasets
Wenlong Lyu
Shoubo Hu
Jie Chuai
Zhitang Chen
71
2
0
09 Aug 2023
ELFNet: Evidential Local-global Fusion for Stereo Matching
ELFNet: Evidential Local-global Fusion for Stereo Matching
Jieming Lou
Weide Liu
Zhu Chen
Fayao Liu
Jun Cheng
115
30
0
01 Aug 2023
Uncertainty in Natural Language Generation: From Theory to Applications
Uncertainty in Natural Language Generation: From Theory to Applications
Joris Baan
Nico Daheim
Evgenia Ilia
Dennis Ulmer
Haau-Sing Li
Raquel Fernández
Barbara Plank
Rico Sennrich
Chrysoula Zerva
Wilker Aziz
UQLM
187
49
0
28 Jul 2023
Multi-layer Aggregation as a key to feature-based OOD detection
Multi-layer Aggregation as a key to feature-based OOD detection
Benjamin Lambert
Florence Forbes
Senan Doyle
M. Dojat
83
6
0
28 Jul 2023
A comparison of machine learning surrogate models of street-scale
  flooding in Norfolk, Virginia
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
71
6
0
26 Jul 2023
Information-theoretic Analysis of Test Data Sensitivity in Uncertainty
Information-theoretic Analysis of Test Data Sensitivity in Uncertainty
Futoshi Futami
Tomoharu Iwata
UDPER
90
4
0
23 Jul 2023
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
S. Landgraf
Markus Hillemann
Kira Wursthorn
Markus Ulrich
SSegUQCV
80
12
0
19 Jul 2023
A Bayesian approach to quantifying uncertainties and improving
  generalizability in traffic prediction models
A Bayesian approach to quantifying uncertainties and improving generalizability in traffic prediction models
Agnimitra Sengupta
Sudeepta Mondal
A. Das
S. I. Guler
BDLUQCV
69
17
0
12 Jul 2023
URL: A Representation Learning Benchmark for Transferable Uncertainty
  Estimates
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
748
15
0
07 Jul 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
UQCV
126
23
0
06 Jul 2023
Distance Preserving Machine Learning for Uncertainty Aware Accelerator
  Capacitance Predictions
Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions
S. Goldenberg
M. Schram
Kishansingh Rajput
T. Britton
C. Pappas
Dawei Lu
Jared Walden
M. Radaideh
Sarah Cousineau
S. Harave
87
1
0
05 Jul 2023
Morse Neural Networks for Uncertainty Quantification
Morse Neural Networks for Uncertainty Quantification
Benoit Dherin
Huiyi Hu
Jie Jessie Ren
Michael W. Dusenberry
Balaji Lakshminarayanan
UQCVAI4CE
69
5
0
02 Jul 2023
Beyond AUROC & co. for evaluating out-of-distribution detection
  performance
Beyond AUROC & co. for evaluating out-of-distribution detection performance
Galadrielle Humblot-Renaux
Sergio Escalera
T. Moeslund
OODD
101
7
0
26 Jun 2023
Density Uncertainty Layers for Reliable Uncertainty Estimation
Density Uncertainty Layers for Reliable Uncertainty Estimation
Yookoon Park
David M. Blei
UQCVBDL
114
3
0
21 Jun 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
  Learning under Distribution Shift
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
138
19
0
21 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
113
12
0
20 Jun 2023
Towards Stability of Autoregressive Neural Operators
Towards Stability of Autoregressive Neural Operators
Michael McCabe
P. Harrington
Shashank Subramanian
Jed Brown
AI4CE
213
27
0
18 Jun 2023
Mitigating Transformer Overconfidence via Lipschitz Regularization
Mitigating Transformer Overconfidence via Lipschitz Regularization
Wenqian Ye
Yunsheng Ma
Xu Cao
Kun Tang
96
14
0
12 Jun 2023
Kepler: Robust Learning for Faster Parametric Query Optimization
Kepler: Robust Learning for Faster Parametric Query Optimization
Lyric Doshi
Vincent Zhuang
Gaurav Jain
Ryan Marcus
Haoyu Huang
Deniz Altinbüken
E. Brevdo
Campbell Fraser
79
25
0
11 Jun 2023
Variational Imbalanced Regression: Fair Uncertainty Quantification via
  Probabilistic Smoothing
Variational Imbalanced Regression: Fair Uncertainty Quantification via Probabilistic Smoothing
Ziyan Wang
Hao Wang
UQCV
195
0
0
11 Jun 2023
CUE: An Uncertainty Interpretation Framework for Text Classifiers Built
  on Pre-Trained Language Models
CUE: An Uncertainty Interpretation Framework for Text Classifiers Built on Pre-Trained Language Models
Jiazheng Li
ZHAOYUE SUN
Bin Liang
Lin Gui
Yulan He
85
2
0
06 Jun 2023
A Data-Driven Measure of Relative Uncertainty for Misclassification
  Detection
A Data-Driven Measure of Relative Uncertainty for Misclassification Detection
Eduardo Dadalto Camara Gomes
Marco Romanelli
Georg Pichler
Pablo Piantanida
UQCV
146
6
0
02 Jun 2023
Beyond Confidence: Reliable Models Should Also Consider Atypicality
Beyond Confidence: Reliable Models Should Also Consider Atypicality
Mert Yuksekgonul
Linjun Zhang
James Zou
Carlos Guestrin
149
24
0
29 May 2023
Training Private Models That Know What They Don't Know
Training Private Models That Know What They Don't Know
Stephan Rabanser
Anvith Thudi
Abhradeep Thakurta
Krishnamurthy Dvijotham
Nicolas Papernot
107
7
0
28 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDLUQCV
177
1
0
26 May 2023
Previous
12345678
Next