ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10562
  4. Cited By
Uncertainty in Gradient Boosting via Ensembles

Uncertainty in Gradient Boosting via Ensembles

18 June 2020
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty in Gradient Boosting via Ensembles"

48 / 48 papers shown
Title
Efficient Membership Inference Attacks by Bayesian Neural Network
Zhenlong Liu
Wenyu Jiang
Feng Zhou
Hongxin Wei
MIALM
66
1
0
10 Mar 2025
Position Specific Scoring Is All You Need? Revisiting Protein Sequence
  Classification Tasks
Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks
Sarwan Ali
Taslim Murad
Prakash Chourasia
Haris Mansoor
I. Khan
Pin-Yu Chen
Murray Patterson
26
1
0
16 Oct 2024
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Ruijia Niu
D. Wu
Rose Yu
Yi-An Ma
30
1
0
09 Oct 2024
Advancing Molecular Machine (Learned) Representations with
  Stereoelectronics-Infused Molecular Graphs
Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
Daniil A. Boiko
Thiago Reschutzegger
Benjamín Sánchez-Lengeling
Samuel M. Blau
Gabe Gomes
GNN
AI4CE
23
1
0
08 Aug 2024
Gradient Boosting Reinforcement Learning
Gradient Boosting Reinforcement Learning
Benjamin Fuhrer
Chen Tessler
Gal Dalal
OffRL
AI4CE
44
3
0
11 Jul 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational
  Inference in Bayesian neural networks
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCV
BDL
38
2
0
06 Jun 2024
Diffusion Boosted Trees
Diffusion Boosted Trees
Xizewen Han
Mingyuan Zhou
AI4CE
36
0
0
03 Jun 2024
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
Ilia Azizi
M. Boldi
V. Chavez-Demoulin
95
0
0
28 May 2024
ProbSAINT: Probabilistic Tabular Regression for Used Car Pricing
ProbSAINT: Probabilistic Tabular Regression for Used Car Pricing
Kiran Madhusudhanan
Gunnar Behrens
Maximilian Stubbemann
Lars Schmidt-Thieme
22
0
0
06 Mar 2024
Embracing Uncertainty Flexibility: Harnessing a Supervised Tree Kernel
  to Empower Ensemble Modelling for 2D Echocardiography-Based Prediction of
  Right Ventricular Volume
Embracing Uncertainty Flexibility: Harnessing a Supervised Tree Kernel to Empower Ensemble Modelling for 2D Echocardiography-Based Prediction of Right Ventricular Volume
T. A. Bohoran
P. Kampaktsis
Laura McLaughlin
Jay Leb
Gerry P. McCann
A. Giannakidis
25
1
0
04 Mar 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
H. Linander
UQCV
28
13
0
19 Feb 2024
SeqNAS: Neural Architecture Search for Event Sequence Classification
SeqNAS: Neural Architecture Search for Event Sequence Classification
Igor Udovichenko
Egor Shvetsov
Denis Divitsky
Dmitry Osin
I. Trofimov
Anatoliy Glushenko
I. Sukharev
Dmitry Berestnev
E. Burnaev
23
6
0
06 Jan 2024
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
  Molecular Property Prediction
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction
Andac Demir
Francis Prael
B. Kiziltan
19
2
0
12 Dec 2023
Decomposing Uncertainty for Large Language Models through Input
  Clarification Ensembling
Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
Bairu Hou
Yujian Liu
Kaizhi Qian
Jacob Andreas
Shiyu Chang
Yang Zhang
UD
UQCV
PER
21
48
0
15 Nov 2023
Model Uncertainty based Active Learning on Tabular Data using Boosted
  Trees
Model Uncertainty based Active Learning on Tabular Data using Boosted Trees
Sharath M Shankaranarayana
27
0
0
30 Oct 2023
Improving Opioid Use Disorder Risk Modelling through Behavioral and
  Genetic Feature Integration
Improving Opioid Use Disorder Risk Modelling through Behavioral and Genetic Feature Integration
Sybille Légitime
Kaustubh Prabhu
Devin J. McConnell
Bing Wang
D. Dey
Derek Aguiar
12
0
0
19 Sep 2023
Correcting sampling biases via importance reweighting for spatial
  modeling
Correcting sampling biases via importance reweighting for spatial modeling
Boris Prokhorov
Diana Koldasbayeva
Alexey Zaytsev
11
0
0
09 Sep 2023
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion
  Trajectories
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories
Henrik Seckler
J. Szwabiński
Ralf Metzler
19
25
0
18 Aug 2023
Identifying contributors to supply chain outcomes in a multi-echelon
  setting: a decentralised approach
Identifying contributors to supply chain outcomes in a multi-echelon setting: a decentralised approach
Stefan Schoepf
Jack Foster
Alexandra Brintrup
19
1
0
22 Jul 2023
Prescriptive Process Monitoring Under Resource Constraints: A
  Reinforcement Learning Approach
Prescriptive Process Monitoring Under Resource Constraints: A Reinforcement Learning Approach
Mahmoud Shoush
Marlon Dumas
29
1
0
13 Jul 2023
Continuous time recurrent neural networks: overview and application to
  forecasting blood glucose in the intensive care unit
Continuous time recurrent neural networks: overview and application to forecasting blood glucose in the intensive care unit
O. Fitzgerald
O. Perez-Concha
B. Gallego-Luxan
Alejandro Metke-Jimenez
Lachlan Rudd
Louisa R Jorm
BDL
OOD
AI4TS
24
0
0
14 Apr 2023
Variational Boosted Soft Trees
Variational Boosted Soft Trees
Tristan Cinquin
Tammo Rukat
Philipp Schmidt
Martin Wistuba
Artur Bekasov
BDL
UQCV
16
0
0
21 Feb 2023
Neural Additive Models for Location Scale and Shape: A Framework for
  Interpretable Neural Regression Beyond the Mean
Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean
Anton Thielmann
René-Marcel Kruse
Thomas Kneib
Benjamin Säfken
24
12
0
27 Jan 2023
Uncertainty Aware Trader-Company Method: Interpretable Stock Price
  Prediction Capturing Uncertainty
Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty
Yugo Fujimotol
Kei Nakagawa
Kentaro Imajo
Kentaro Minami
AIFin
30
3
0
31 Oct 2022
Uncertainty in Extreme Multi-label Classification
Uncertainty in Extreme Multi-label Classification
Jyun-Yu Jiang
Wei-Cheng Chang
Jiong Zhong
Cho-Jui Hsieh
Hsiang-Fu Yu
UQCV
14
0
0
18 Oct 2022
Towards Clear Expectations for Uncertainty Estimation
Towards Clear Expectations for Uncertainty Estimation
Victor Bouvier
Simona Maggio
A. Abraham
L. Dreyfus-Schmidt
UQCV
25
1
0
27 Jul 2022
Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
  Classification
Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence Classification
Sarwan Ali
Bikram Sahoo
Alexander Zelikovskiy
Pin-Yu Chen
Murray Patterson
OOD
AAML
22
19
0
18 Jul 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei-Neng Chen
AI4CE
31
11
0
11 Jul 2022
When to intervene? Prescriptive Process Monitoring Under Uncertainty and
  Resource Constraints
When to intervene? Prescriptive Process Monitoring Under Uncertainty and Resource Constraints
Mahmoud Shoush
Marlon Dumas
30
12
0
15 Jun 2022
Confident Sinkhorn Allocation for Pseudo-Labeling
Confident Sinkhorn Allocation for Pseudo-Labeling
Vu-Linh Nguyen
Hisham Husain
S. Farfade
A. Hengel
25
5
0
13 Jun 2022
Gradient Boosting Performs Gaussian Process Inference
Gradient Boosting Performs Gaussian Process Inference
Aleksei Ustimenko
Artem Beliakov
Liudmila Prokhorenkova
BDL
20
5
0
11 Jun 2022
TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression
TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression
Patryk Wielopolski
Maciej Ziȩba
UQCV
17
1
0
08 Jun 2022
Instance-Based Uncertainty Estimation for Gradient-Boosted Regression
  Trees
Instance-Based Uncertainty Estimation for Gradient-Boosted Regression Trees
Jonathan Brophy
Daniel Lowd
26
10
0
23 May 2022
On the Calibration of Probabilistic Classifier Sets
On the Calibration of Probabilistic Classifier Sets
Thomas Mortier
Viktor Bengs
Eyke Hüllermeier
Stijn Luca
Willem Waegeman
UQCV
19
7
0
20 May 2022
Adapting and Evaluating Influence-Estimation Methods for
  Gradient-Boosted Decision Trees
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Jonathan Brophy
Zayd Hammoudeh
Daniel Lowd
TDI
19
22
0
30 Apr 2022
Probabilistic Models for Manufacturing Lead Times
Probabilistic Models for Manufacturing Lead Times
Recep Yusuf Bekci
Yacine Mahdid
Jinling Xing
Nikita Letov
Ying Zhang
Zahid Pasha
14
0
0
28 Apr 2022
On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
  Model-based Optimization
On Uncertainty Estimation by Tree-based Surrogate Models in Sequential Model-based Optimization
Jungtaek Kim
Seungjin Choi
22
5
0
22 Feb 2022
Sketching stochastic valuation functions
Sketching stochastic valuation functions
M. C.
Yiliu Wang
17
0
0
01 Feb 2022
More layers! End-to-end regression and uncertainty on tabular data with
  deep learning
More layers! End-to-end regression and uncertainty on tabular data with deep learning
Ivan Bondarenko
OOD
LMTD
UQCV
17
4
0
07 Dec 2021
Evaluating Predictive Uncertainty and Robustness to Distributional Shift
  Using Real World Data
Evaluating Predictive Uncertainty and Robustness to Distributional Shift Using Real World Data
Kumud Lakara
Akshat Bhandari
Pratinav Seth
Ujjwal Verma
OOD
19
3
0
08 Nov 2021
Detecting and Mitigating Test-time Failure Risks via Model-agnostic
  Uncertainty Learning
Detecting and Mitigating Test-time Failure Risks via Model-agnostic Uncertainty Learning
Preethi Lahoti
Krishna P. Gummadi
G. Weikum
28
3
0
09 Sep 2021
Look Before You Leap! Designing a Human-Centered AI System for Change
  Risk Assessment
Look Before You Leap! Designing a Human-Centered AI System for Change Risk Assessment
Binay Gupta
Anirban Chatterjee
Harika Matha
Kunal Banerjee
Lalitdutt Parsai
Vijay Srinivas Agneeswaran
19
2
0
18 Aug 2021
Fed-ensemble: Improving Generalization through Model Ensembling in
  Federated Learning
Fed-ensemble: Improving Generalization through Model Ensembling in Federated Learning
Naichen Shi
Fan Lai
Raed Al Kontar
Mosharaf Chowdhury
FedML
23
35
0
21 Jul 2021
Shifts: A Dataset of Real Distributional Shift Across Multiple
  Large-Scale Tasks
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
A. Malinin
Neil Band
Ganshin
Alexander
German Chesnokov
...
Roginskiy
Denis
Mariya Shmatova
Panos Tigas
Boris Yangel
UQCV
OOD
25
126
0
15 Jul 2021
Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings
Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings
U. Sarawgi
Rishab Khincha
W. Zulfikar
Satrajit S. Ghosh
Pattie Maes
UQCV
25
7
0
21 Apr 2021
SGLB: Stochastic Gradient Langevin Boosting
SGLB: Stochastic Gradient Langevin Boosting
Aleksei Ustimenko
Liudmila Prokhorenkova
13
19
0
20 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1