ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.00523
  4. Cited By
Drug discovery with explainable artificial intelligence

Drug discovery with explainable artificial intelligence

1 July 2020
José Jiménez-Luna
F. Grisoni
G. Schneider
ArXivPDFHTML

Papers citing "Drug discovery with explainable artificial intelligence"

50 / 100 papers shown
Title
Semiparametric Regression for Spatial Data via Deep Learning
Semiparametric Regression for Spatial Data via Deep Learning
Kexuan Li
Jun Zhu
A. Ives
V. Radeloff
Fangfang Wang
10
8
0
10 Jan 2023
Discovery of structure-property relations for molecules via
  hypothesis-driven active learning over the chemical space
Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space
Ayana Ghosh
Sergei V. Kalinin
M. Ziatdinov
15
8
0
06 Jan 2023
t-SMILES: A Scalable Fragment-based Molecular Representation Framework
  for De Novo Molecule Generation
t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation
Juan-Ni Wu
Tong Wang
Yue (Eleanor) Chen
Li-Juan Tang
Hai-Long Wu
Ru-Qin Yu
9
0
0
04 Jan 2023
Structure-based drug discovery with deep learning
Structure-based drug discovery with deep learning
Rıza Özçelik
D. V. Tilborg
José Jiménez-Luna
F. Grisoni
AI4CE
8
34
0
26 Dec 2022
Forecasting West Nile Virus with Graph Neural Networks: Harnessing
  Spatial Dependence in Irregularly Sampled Geospatial Data
Forecasting West Nile Virus with Graph Neural Networks: Harnessing Spatial Dependence in Irregularly Sampled Geospatial Data
A. Tonks
Trevor Harris
Bo Li
W. Brown
Rebecca Smith
13
3
0
21 Dec 2022
Molecule optimization via multi-objective evolutionary in implicit
  chemical space
Molecule optimization via multi-objective evolutionary in implicit chemical space
Xin Xia
Yansen Su
Chunhou Zheng
Xiangxiang Zeng
8
1
0
17 Dec 2022
Scaffold-Based Multi-Objective Drug Candidate Optimization
Scaffold-Based Multi-Objective Drug Candidate Optimization
Agustin Kruel
Andrew D. McNaughton
Neeraj Kumar
20
1
0
15 Dec 2022
Molecular Joint Representation Learning via Multi-modal Information
Molecular Joint Representation Learning via Multi-modal Information
Tianyu Wu
Yang Tang
Qiyu Sun
Luolin Xiong
8
14
0
25 Nov 2022
MEGAN: Multi-Explanation Graph Attention Network
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
6
8
0
23 Nov 2022
Variable selection for nonlinear Cox regression model via deep learning
Variable selection for nonlinear Cox regression model via deep learning
Kexuan Li
23
5
0
17 Nov 2022
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph
  Neural Networks
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks
Ryien Hosseini
F. Simini
Austin R. Clyde
A. Ramanathan
11
5
0
04 Nov 2022
Explainable AI over the Internet of Things (IoT): Overview,
  State-of-the-Art and Future Directions
Explainable AI over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions
Senthil Kumar Jagatheesaperumal
Viet Quoc Pham
Rukhsana Ruby
Zhaohui Yang
Chunmei Xu
Zhaoyang Zhang
11
50
0
02 Nov 2022
Evaluating Point-Prediction Uncertainties in Neural Networks for Drug
  Discovery
Evaluating Point-Prediction Uncertainties in Neural Networks for Drug Discovery
Y. Fan
Jonathan E. Allen
K. McLoughlin
Da Shi
B. Bennion
Xiaohua Zhang
F. Lightstone
6
0
0
31 Oct 2022
ProGReST: Prototypical Graph Regression Soft Trees for Molecular
  Property Prediction
ProGReST: Prototypical Graph Regression Soft Trees for Molecular Property Prediction
Dawid Rymarczyk
D. Dobrowolski
Tomasz Danel
22
3
0
07 Oct 2022
Predicting CO$_2$ Absorption in Ionic Liquids with Molecular Descriptors
  and Explainable Graph Neural Networks
Predicting CO2_22​ Absorption in Ionic Liquids with Molecular Descriptors and Explainable Graph Neural Networks
Yue-Cheng Jian
Yuyang Wang
A. Farimani
17
2
0
29 Sep 2022
Unraveling Key Elements Underlying Molecular Property Prediction: A
  Systematic Study
Unraveling Key Elements Underlying Molecular Property Prediction: A Systematic Study
Jianyuan Deng
Zhibo Yang
Hehe Wang
Iwao Ojima
Dimitris Samaras
Fusheng Wang
8
1
0
26 Sep 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
41
20
0
12 Sep 2022
HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
  Property Prediction Equipped with Feature-Wise Attention
HiGNN: Hierarchical Informative Graph Neural Networks for Molecular Property Prediction Equipped with Feature-Wise Attention
Weimin Zhu
Yi Zhang
Duancheng Zhao
Jianrong Xu
Ling Wang
19
0
0
30 Aug 2022
GEM-2: Next Generation Molecular Property Prediction Network by Modeling
  Full-range Many-body Interactions
GEM-2: Next Generation Molecular Property Prediction Network by Modeling Full-range Many-body Interactions
Lihang Liu
Donglong He
Xiaomin Fang
Shanzhuo Zhang
Fan Wang
Jingzhou He
Hua-Hong Wu
13
3
0
11 Aug 2022
DeepProphet2 -- A Deep Learning Gene Recommendation Engine
DeepProphet2 -- A Deep Learning Gene Recommendation Engine
Daniel Brambilla
Davide Giacomini
Luca Muscarnera
Andrea Mazzoleni
6
1
0
03 Aug 2022
XADLiME: eXplainable Alzheimer's Disease Likelihood Map Estimation via
  Clinically-guided Prototype Learning
XADLiME: eXplainable Alzheimer's Disease Likelihood Map Estimation via Clinically-guided Prototype Learning
A. Mulyadi
Wonsik Jung
Kwanseok Oh
Jee Seok Yoon
Heung-Il Suk
MedIm
4
2
0
27 Jul 2022
Interpretable Boosted Decision Tree Analysis for the Majorana
  Demonstrator
Interpretable Boosted Decision Tree Analysis for the Majorana Demonstrator
I. Arnquist
F. Avignone
A. Barabash
C. Barton
K. Bhimani
...
S. Vasilyev
J. Wilkerson
C. Wiseman
W. Xu
C.-H. Yu
9
3
0
21 Jul 2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph
  Neural Networks
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler
Daniel Brady
Winfried Lotzsch
M. Fleischhauer
Johannes Otterbach
AI4CE
8
1
0
05 Jul 2022
DORA: Exploring Outlier Representations in Deep Neural Networks
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
9
12
0
09 Jun 2022
Innovations in Integrating Machine Learning and Agent-Based Modeling of
  Biomedical Systems
Innovations in Integrating Machine Learning and Agent-Based Modeling of Biomedical Systems
N. Sivakumar
C. Mura
S. Peirce
AI4CE
31
21
0
02 Jun 2022
Interpretation Quality Score for Measuring the Quality of
  interpretability methods
Interpretation Quality Score for Measuring the Quality of interpretability methods
Sean Xie
Soroush Vosoughi
Saeed Hassanpour
XAI
11
5
0
24 May 2022
Deep Feature Screening: Feature Selection for Ultra High-Dimensional
  Data via Deep Neural Networks
Deep Feature Screening: Feature Selection for Ultra High-Dimensional Data via Deep Neural Networks
Kexuan Li
Fangfang Wang
Lingli Yang
Ruiqi Liu
11
33
0
04 Apr 2022
Towards Interpretable Deep Reinforcement Learning Models via Inverse
  Reinforcement Learning
Towards Interpretable Deep Reinforcement Learning Models via Inverse Reinforcement Learning
Yuansheng Xie
Soroush Vosoughi
Saeed Hassanpour
9
2
0
30 Mar 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
19
75
0
28 Mar 2022
Molecule Generation for Drug Design: a Graph Learning Perspective
Molecule Generation for Drug Design: a Graph Learning Perspective
Nianzu Yang
Huaijin Wu
Xiaoyong Pan
Ye Yuan
Junchi Yan
14
13
0
18 Feb 2022
Multi-task Joint Strategies of Self-supervised Representation Learning
  on Biomedical Networks for Drug Discovery
Multi-task Joint Strategies of Self-supervised Representation Learning on Biomedical Networks for Drug Discovery
Xiaoqi Wang
Yingjie Cheng
Yaning Yang
Yue Yu
Fei Li
Shaoliang Peng
11
41
0
12 Jan 2022
Faster Deep Ensemble Averaging for Quantification of DNA Damage from
  Comet Assay Images With Uncertainty Estimates
Faster Deep Ensemble Averaging for Quantification of DNA Damage from Comet Assay Images With Uncertainty Estimates
Srikanth Namuduri
Prateek Mehta
L. Barbé
Stephanie Lam
Zohreh Faghihmonzavi
S. Finkbeiner
S. Bhansali
18
1
0
23 Dec 2021
Holistic Deep Learning
Holistic Deep Learning
Dimitris Bertsimas
Kimberly Villalobos Carballo
L. Boussioux
M. Li
Alex Paskov
I. Paskov
17
1
0
29 Oct 2021
An In-depth Summary of Recent Artificial Intelligence Applications in
  Drug Design
An In-depth Summary of Recent Artificial Intelligence Applications in Drug Design
Yi Zhang
AI4CE
28
4
0
10 Oct 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
14
213
0
26 Jul 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
90
193
0
12 Jul 2021
Explainable AI (XAI) for PHM of Industrial Asset: A State-of-The-Art,
  PRISMA-Compliant Systematic Review
Explainable AI (XAI) for PHM of Industrial Asset: A State-of-The-Art, PRISMA-Compliant Systematic Review
Ahmad Nazrie Mohd Nor
S. R. Pedapati
M. Muhammad
19
13
0
08 Jul 2021
Quantitative Evaluation of Explainable Graph Neural Networks for
  Molecular Property Prediction
Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction
Jiahua Rao
Shuangjia Zheng
Yuedong Yang
6
34
0
01 Jul 2021
Projection-wise Disentangling for Fair and Interpretable Representation
  Learning: Application to 3D Facial Shape Analysis
Projection-wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis
Xianjing Liu
Bo-wen Li
Esther E. Bron
W. Niessen
E. Wolvius
Gennady Roshchupkin
CVBM
19
10
0
25 Jun 2021
Artificial Intelligence in Drug Discovery: Applications and Techniques
Artificial Intelligence in Drug Discovery: Applications and Techniques
Jianyuan Deng
Zhibo Yang
Iwao Ojima
Dimitris Samaras
Fusheng Wang
AI4TS
21
98
0
09 Jun 2021
Principled Hyperedge Prediction with Structural Spectral Features and
  Neural Networks
Principled Hyperedge Prediction with Structural Spectral Features and Neural Networks
Changlin Wan
Muhan Zhang
Weiyu Hao
Sha Cao
Pan Li
Chi Zhang
13
13
0
08 Jun 2021
Machine Assistance for Credit Card Approval? Random Wheel can Recommend
  and Explain
Machine Assistance for Credit Card Approval? Random Wheel can Recommend and Explain
Anupam Khan
S. Ghosh
14
1
0
11 May 2021
Explanation from Specification
Explanation from Specification
Harish Naik
Gyorgy Turán
XAI
8
0
0
13 Dec 2020
Message Passing Networks for Molecules with Tetrahedral Chirality
Message Passing Networks for Molecules with Tetrahedral Chirality
L. Pattanaik
O. Ganea
Ian Coley
K. Jensen
W. Green
Connor W. Coley
GNN
6
21
0
24 Nov 2020
Automated Detection and Forecasting of COVID-19 using Deep Learning
  Techniques: A Review
Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review
A. Shoeibi
Marjane Khodatars
M. Jafari
Navid Ghassemi
Delaram Sadeghi
...
Z. Sani
F. Khozeimeh
S. Nahavandi
U. Acharya
Juan M Gorriz
33
176
0
16 Jul 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
208
1,205
0
12 Feb 2018
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
222
3,658
0
28 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
238
13,283
0
25 Aug 2014
Previous
12