Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.06823
Cited By
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
14 July 2020
Laurent Valentin Jospin
Wray L. Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users"
50 / 98 papers shown
Title
LAPSO: A Unified Optimization View for Learning-Augmented Power System Operations
Wangkun Xu
Zhongda Chu
Fei Teng
48
0
0
08 May 2025
CoCoAFusE: Beyond Mixtures of Experts via Model Fusion
Aurelio Raffa Ugolini
M. Tanelli
Valentina Breschi
MoE
24
0
0
02 May 2025
A Langevin sampling algorithm inspired by the Adam optimizer
B. Leimkuhler
René Lohmann
P. Whalley
79
0
0
26 Apr 2025
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Jimmy Huy Tran
T. S. Kleppe
BDL
45
0
0
25 Apr 2025
A Deep Bayesian Convolutional Spiking Neural Network-based CAD system with Uncertainty Quantification for Medical Images Classification
Mohaddeseh Chegini
Ali Mahloojifar
BDL
UQCV
78
0
0
23 Apr 2025
Decentralized Collective World Model for Emergent Communication and Coordination
Kentaro Nomura
Tatsuya Aoki
Tadahiro Taniguchi
Takato Horii
72
0
0
04 Apr 2025
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Samuel Bilson
Anna Pustogvar
UQCV
97
1
0
27 Mar 2025
BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
Mohaddeseh Chegini
Ali Mahloojifar
75
1
0
18 Mar 2025
A Unified Evaluation Framework for Epistemic Predictions
Shireen Kudukkil Manchingal
Muhammad Mubashar
Kaizheng Wang
Fabio Cuzzolin
UQCV
67
2
0
28 Jan 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
61
2
0
28 Jan 2025
Analog Bayesian neural networks are insensitive to the shape of the weight distribution
Ravi G. Patel
T. Xiao
S. Agarwal
C. Bennett
38
0
0
09 Jan 2025
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
72
1
0
30 Oct 2024
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
59
0
0
04 Oct 2024
SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks
E. V. Aretos
D. G. Sotiropoulos
25
0
0
08 Sep 2024
Joint Segmentation and Image Reconstruction with Error Prediction in Photoacoustic Imaging using Deep Learning
Ruibo Shang
Geoffrey P. Luke
Matthew O'Donnell
UQCV
37
0
0
02 Jul 2024
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
36
0
0
01 Jul 2024
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA
Zehuan Zhang
Hongxiang Fan
Hao Mark Chen
Lukasz Dudziak
Wayne Luk
BDL
40
0
0
23 Jun 2024
Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset
Alona Sakhnenko
Julian Sikora
J. M. Lorenz
39
0
0
10 Jun 2024
Cycles of Thought: Measuring LLM Confidence through Stable Explanations
Evan Becker
Stefano Soatto
45
6
0
05 Jun 2024
Learning Solutions of Stochastic Optimization Problems with Bayesian Neural Networks
Alan A. Lahoud
Erik Schaffernicht
J. A. Stork
UQCV
30
0
0
05 Jun 2024
CONFINE: Conformal Prediction for Interpretable Neural Networks
Linhui Huang
S. Lala
N. Jha
68
2
0
01 Jun 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
0
0
23 May 2024
Reliable Interval Prediction of Minimum Operating Voltage Based on On-chip Monitors via Conformalized Quantile Regression
Yuxuan Yin
Xiaoxiao Wang
Rebecca Chen
Chen He
Peng Li
18
1
0
03 May 2024
Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices
Gleb I. Radchenko
Victoria Andrea Fill
40
1
0
14 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
A Framework for Variational Inference of Lightweight Bayesian Neural Networks with Heteroscedastic Uncertainties
D. Schodt
Ryan Brown
Michael Merritt
Samuel Park
Delsin Menolascino
M. Peot
BDL
UQCV
UD
32
1
0
22 Feb 2024
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under Distribution Shifts
Masoumeh Javanbakhat
Md Tasnimul Hasan
Cristoph Lippert
UQCV
OOD
26
1
0
10 Feb 2024
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
73
2
0
02 Feb 2024
Bayesian Inference Accelerator for Spiking Neural Networks
Prabodh Katti
Anagha Nimbekar
Chen Li
Amit Acharyya
Bashir M. Al-Hashimi
Bipin Rajendran
TPM
15
2
0
27 Jan 2024
Inadequacy of common stochastic neural networks for reliable clinical decision support
Adrian Lindenmeyer
Malte Blattmann
S. Franke
Thomas Neumuth
Daniel Schneider
BDL
35
1
0
24 Jan 2024
Uncertainty Quantification in Machine Learning for Joint Speaker Diarization and Identification
Simon W. McKnight
Aidan O. T. Hogg
Vincent W. Neo
Patrick A. Naylor
19
1
0
28 Dec 2023
Favour: FAst Variance Operator for Uncertainty Rating
Thomas Dybdahl Ahle
Sahar Karimi
Peter Tak Peter Tang
BDL
27
0
0
21 Nov 2023
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
18
7
0
16 Nov 2023
From Pointwise to Powerhouse: Initialising Neural Networks with Generative Models
Christian Harder
Moritz Fuchs
Yuri Tolkach
Anirban Mukhopadhyay
30
0
0
25 Oct 2023
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
35
1
0
25 Oct 2023
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Context-Aware Generative Models for Prediction of Aircraft Ground Tracks
Nick Pepper
George De Ath
Marc Thomas
Richard Everson
T. Dodwell
35
0
0
26 Sep 2023
Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
Elizaveta Kostenok
D. Cherniavskii
Alexey Zaytsev
56
5
0
22 Aug 2023
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
S. Landgraf
Markus Hillemann
Kira Wursthorn
Markus Ulrich
SSeg
UQCV
26
6
0
19 Jul 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
35
0
0
10 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing Uncertainty
Anshul Nayak
A. Eskandarian
Zachary R. Doerzaph
P. Ghorai
35
4
0
26 May 2023
Bayesian Renormalization
D. Berman
Marc S. Klinger
A. G. Stapleton
35
16
0
17 May 2023
Noise robust neural network architecture
Yunuo Xiong
Hongwei Xiong
14
1
0
16 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a Bayesian Neural Network
Rebecca S Stone
Nishant Ravikumar
A. Bulpitt
David C. Hogg
BDL
36
0
0
29 Mar 2023
Federated Learning via Variational Bayesian Inference: Personalization, Sparsity and Clustering
Xu Zhang
Wenpeng Li
Yunfeng Shao
Yinchuan Li
FedML
24
4
0
08 Mar 2023
Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Benjamin Avanzi
G. Taylor
Melantha Wang
Bernard Wong
22
12
0
30 Jan 2023
1
2
Next