Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.15801
Cited By
Finite Versus Infinite Neural Networks: an Empirical Study
31 July 2020
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Finite Versus Infinite Neural Networks: an Empirical Study"
50 / 52 papers shown
Title
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
50
0
0
10 Jun 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
Yunlong Yu
CLL
34
3
0
19 Mar 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
14
0
0
08 Jan 2024
On the Neural Tangent Kernel of Equilibrium Models
Zhili Feng
J. Zico Kolter
16
6
0
21 Oct 2023
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
60
8
0
08 Sep 2023
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks
Chanwoo Chun
Daniel D. Lee
BDL
30
2
0
17 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
36
13
0
11 May 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
19
15
0
13 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
13
1
0
06 Apr 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
16
6
0
03 Feb 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan T. Kelly
Semyon Malamud
11
0
0
26 Jan 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
39
121
0
17 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
37
73
0
11 Jan 2023
Characterizing the Spectrum of the NTK via a Power Series Expansion
Michael Murray
Hui Jin
Benjamin Bowman
Guido Montúfar
30
11
0
15 Nov 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
28
12
0
21 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
24
4
0
30 Sep 2022
Joint Embedding Self-Supervised Learning in the Kernel Regime
B. Kiani
Randall Balestriero
Yubei Chen
S. Lloyd
Yann LeCun
SSL
41
13
0
29 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
44
6
0
17 Sep 2022
Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Blackbox Optimization
Xingyou Song
Sagi Perel
Chansoo Lee
Greg Kochanski
Daniel Golovin
29
26
0
27 Jul 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
29
23
0
24 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
21
10
0
08 Jun 2022
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
31
28
0
03 Jun 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Investigating Power laws in Deep Representation Learning
Arna Ghosh
Arnab Kumar Mondal
Kumar Krishna Agrawal
Blake A. Richards
SSL
OOD
11
19
0
11 Feb 2022
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Maksim Velikanov
Dmitry Yarotsky
4
6
0
02 Feb 2022
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
22
1
0
07 Dec 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
C. Pehlevan
BDL
UQCV
MDE
36
8
0
23 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
22
32
0
02 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
C. Pehlevan
MLT
13
74
0
29 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
54
9
0
06 Oct 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
24
229
0
27 Jul 2021
How to Train Your Wide Neural Network Without Backprop: An Input-Weight Alignment Perspective
Akhilan Boopathy
Ila Fiete
16
9
0
15 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
29
26
0
10 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Z. Ringel
SSL
MLT
20
31
0
08 Jun 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
28
15
0
06 May 2021
A Neural Pre-Conditioning Active Learning Algorithm to Reduce Label Complexity
Seo Taek Kong
Soomin Jeon
Dongbin Na
Jaewon Lee
Honglak Lee
Kyu-Hwan Jung
13
6
0
08 Apr 2021
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
19
238
0
30 Oct 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
13
44
0
27 Oct 2020
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
19
13
0
17 Aug 2020
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDL
UQCV
114
22
0
06 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
19
226
0
13 Feb 2020
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
173
51
0
17 Oct 2019
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
1
2
Next