Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.05664
Cited By
Distill2Vec: Dynamic Graph Representation Learning with Knowledge Distillation
11 November 2020
Stefanos Antaris
Dimitrios Rafailidis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distill2Vec: Dynamic Graph Representation Learning with Knowledge Distillation"
26 / 26 papers shown
Title
Towards Understanding Knowledge Distillation
Mary Phuong
Christoph H. Lampert
42
314
0
27 May 2021
EGAD: Evolving Graph Representation Learning with Self-Attention and Knowledge Distillation for Live Video Streaming Events
Stefanos Antaris
Dimitrios Rafailidis
Sarunas Girdzijauskas
21
5
0
11 Nov 2020
Graph Representation Learning via Multi-task Knowledge Distillation
Jiaqi Ma
Qiaozhu Mei
34
18
0
11 Nov 2019
Contrastive Representation Distillation
Yonglong Tian
Dilip Krishnan
Phillip Isola
65
1,037
0
23 Oct 2019
Dynamic Joint Variational Graph Autoencoders
Sedigheh Mahdavi
Shima Khoshraftar
Aijun An
BDL
22
24
0
04 Oct 2019
Variational Graph Recurrent Neural Networks
Ehsan Hajiramezanali
Arman Hasanzadeh
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
GNN
34
184
0
26 Aug 2019
Semi-Implicit Graph Variational Auto-Encoders
Arman Hasanzadeh
Ehsan Hajiramezanali
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
GNN
41
129
0
19 Aug 2019
Zero-shot Knowledge Transfer via Adversarial Belief Matching
P. Micaelli
Amos Storkey
19
228
0
23 May 2019
Data-Free Learning of Student Networks
Hanting Chen
Yunhe Wang
Chang Xu
Zhaohui Yang
Chuanjian Liu
Boxin Shi
Chunjing Xu
Chao Xu
Qi Tian
FedML
22
367
0
02 Apr 2019
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
A. Pareja
Giacomo Domeniconi
Jie Chen
Tengfei Ma
Toyotaro Suzumura
H. Kanezashi
Tim Kaler
Tao B. Schardl
Charles E. Leisersen
GNN
67
1,051
0
26 Feb 2019
Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System
Jiaxi Tang
Ke Wang
32
186
0
19 Sep 2018
dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning
Palash Goyal
Sujit Rokka Chhetri
A. Canedo
41
399
0
07 Sep 2018
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
307
405
0
09 Apr 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
192
19,902
0
30 Oct 2017
Representation Learning on Graphs: Methods and Applications
William L. Hamilton
Rex Ying
J. Leskovec
GNN
65
1,970
0
17 Sep 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
178
129,831
0
12 Jun 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
253
15,066
0
07 Jun 2017
Convolutional Sequence to Sequence Learning
Jonas Gehring
Michael Auli
David Grangier
Denis Yarats
Yann N. Dauphin
AIMat
109
3,279
0
08 May 2017
DeepGraph: Graph Structure Predicts Network Growth
Cheng Li
Xiaoxiao Guo
Qiaozhu Mei
GNN
39
17
0
20 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
282
28,795
0
09 Sep 2016
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
101
10,800
0
03 Jul 2016
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
59
19,448
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
104
149,474
0
22 Dec 2014
Scalable Link Prediction in Dynamic Networks via Non-Negative Matrix Factorization
Linhong Zhu
Dong Guo
Junming Yin
Greg Ver Steeg
Aram Galstyan
70
199
0
13 Nov 2014
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
166
9,735
0
26 Mar 2014
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
108
2,114
0
21 Dec 2013
1