Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.07876
Cited By
A Survey on the Explainability of Supervised Machine Learning
16 November 2020
Nadia Burkart
Marco F. Huber
FaML
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey on the Explainability of Supervised Machine Learning"
16 / 66 papers shown
Title
Shallow decision trees for explainable
k
k
k
-means clustering
E. Laber
Lucas Murtinho
F. Oliveira
24
24
0
29 Dec 2021
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
14
16
0
24 Nov 2021
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
36
415
0
11 Nov 2021
Training Neural Networks for Solving 1-D Optimal Piecewise Linear Approximation
Hangcheng Dong
Jing-Xiao Liao
Yan Wang
Yixin Chen
Bingguo Liu
Dong Ye
Guodong Liu
57
0
0
14 Oct 2021
Fairness and underspecification in acoustic scene classification: The case for disaggregated evaluations
Andreas Triantafyllopoulos
M. Milling
K. Drossos
Björn W. Schuller
21
7
0
04 Oct 2021
Deep Learning-Based Detection of the Acute Respiratory Distress Syndrome: What Are the Models Learning?
Gregory B. Rehm
Chao Wang
I. Cortés-Puch
Chen-Nee Chuah
Jason Y. Adams
27
1
0
25 Sep 2021
Towards Explainable Scientific Venue Recommendations
Bastian Schafermeier
Gerd Stumme
Tom Hanika
10
1
0
21 Sep 2021
A Comparison of Deep Saliency Map Generators on Multispectral Data in Object Detection
Jens Bayer
David Munch
Michael Arens
3DPC
27
3
0
26 Aug 2021
Sample Observed Effects: Enumeration, Randomization and Generalization
Andre F. Ribeiro
CML
11
4
0
09 Aug 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
26
184
0
15 May 2021
Deep Gravity: enhancing mobility flows generation with deep neural networks and geographic information
F. Simini
Gianni Barlacchi
Massimilano Luca
Luca Pappalardo
HAI
15
174
0
01 Dec 2020
Explainable Empirical Risk Minimization
Linli Zhang
Georgios Karakasidis
Arina Odnoblyudova
Leyla Dogruel
Alex Jung
19
5
0
03 Sep 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
218
7,923
0
17 Aug 2015
Node harvest
N. Meinshausen
72
64
0
12 Oct 2009
Previous
1
2