ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01805
  4. Cited By
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
v1v2 (latest)

Interpretability and Explainability: A Machine Learning Zoo Mini-tour

3 December 2020
Ricards Marcinkevics
Julia E. Vogt
    XAI
ArXiv (abs)PDFHTML

Papers citing "Interpretability and Explainability: A Machine Learning Zoo Mini-tour"

50 / 55 papers shown
Title
K-DAREK: Distance Aware Error for Kurkova Kolmogorov Networks
K-DAREK: Distance Aware Error for Kurkova Kolmogorov Networks
Masoud Ataei
Vikas Dhiman
M. J. Khojasteh
116
0
0
24 Oct 2025
Checkmate: interpretable and explainable RSVQA is the endgame
Checkmate: interpretable and explainable RSVQA is the endgame
Lucrezia Tosato
Christel Chappuis
Syrielle Montariol
F. Weissgerber
Sylvain Lobry
D. Tuia
84
0
0
18 Aug 2025
Multi-criteria Rank-based Aggregation for Explainable AI
Multi-criteria Rank-based Aggregation for Explainable AI
Sujoy Chatterjee
Everton Romanzini Colombo
Marcos Medeiros Raimundo
XAI
122
1
0
30 May 2025
Combining Bayesian Inference and Reinforcement Learning for Agent Decision Making: A Review
Combining Bayesian Inference and Reinforcement Learning for Agent Decision Making: A Review
Chengmin Zhou
Ville Kyrki
Pasi Fränti
Laura Ruotsalainen
BDLAI4CE
332
0
0
12 May 2025
Explainable and Interpretable Multimodal Large Language Models: A
  Comprehensive Survey
Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
Yunkai Dang
Kaichen Huang
Jiahao Huo
Yibo Yan
Shijie Huang
...
Kun Wang
Yong Liu
Jing Shao
Hui Xiong
Xuming Hu
LRM
361
46
0
03 Dec 2024
From Logits to Hierarchies: Hierarchical Clustering made Simple
From Logits to Hierarchies: Hierarchical Clustering made Simple
Emanuele Palumbo
Moritz Vandenhirtz
Alain Ryser
Imant Daunhawer
Julia E. Vogt
128
3
0
10 Oct 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAIAI4TS
612
74
0
30 Aug 2024
Introducing Ínside' Out of Distribution
Introducing Ínside' Out of Distribution
Teddy Lazebnik
289
1
0
05 Jul 2024
Unifying Interpretability and Explainability for Alzheimer's Disease
  Progression Prediction
Unifying Interpretability and Explainability for Alzheimer's Disease Progression Prediction
Raja Farrukh Ali
Stephanie Milani
John Woods
Emmanuel Adenij
Ayesha Farooq
Clayton Mansel
Jeffrey Burns
William Hsu
161
1
0
11 Jun 2024
P-NAL: an Effective and Interpretable Entity Alignment Method
P-NAL: an Effective and Interpretable Entity Alignment Method
Chuanhao Xu
Jingwei Cheng
Fu Zhang
191
2
0
18 Apr 2024
Interpretability in Symbolic Regression: a benchmark of Explanatory
  Methods using the Feynman data set
Interpretability in Symbolic Regression: a benchmark of Explanatory Methods using the Feynman data set
Guilherme Seidyo Imai Aldeia
Fabrício Olivetti de França
236
13
0
08 Apr 2024
The Probabilities Also Matter: A More Faithful Metric for Faithfulness
  of Free-Text Explanations in Large Language Models
The Probabilities Also Matter: A More Faithful Metric for Faithfulness of Free-Text Explanations in Large Language ModelsAnnual Meeting of the Association for Computational Linguistics (ACL), 2024
Noah Y. Siegel
Oana-Maria Camburu
N. Heess
Maria Perez-Ortiz
216
15
0
04 Apr 2024
Intrinsic Subgraph Generation for Interpretable Graph based Visual
  Question Answering
Intrinsic Subgraph Generation for Interpretable Graph based Visual Question Answering
Pascal Tilli
Ngoc Thang Vu
185
1
0
26 Mar 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Kushagra Pandey
Robert Bamler
Sina Daubener
...
Yixin Wang
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
626
39
0
28 Feb 2024
Taking Class Imbalance Into Account in Open Set Recognition Evaluation
Taking Class Imbalance Into Account in Open Set Recognition Evaluation
Joanna Komorniczak
Pawel Ksieniewicz
172
1
0
09 Feb 2024
Experimental Insights Towards Explainable and Interpretable Pedestrian
  Crossing Prediction
Experimental Insights Towards Explainable and Interpretable Pedestrian Crossing Prediction
Angie Nataly Melo
Carlota Salinas
Miguel Ángel Sotelo
145
4
0
05 Dec 2023
MetaSymNet: A Dynamic Symbolic Regression Network Capable of Evolving
  into Arbitrary Formulations
MetaSymNet: A Dynamic Symbolic Regression Network Capable of Evolving into Arbitrary Formulations
Yanjie Li
Weijun Li
Lina Yu
Min Wu
Jinyi Liu
Wenqiang Li
Meilan Hao
Shu Wei
Yusong Deng
215
4
0
13 Nov 2023
Is Machine Learning Unsafe and Irresponsible in Social Sciences?
  Paradoxes and Reconsidering from Recidivism Prediction Tasks
Is Machine Learning Unsafe and Irresponsible in Social Sciences? Paradoxes and Reconsidering from Recidivism Prediction TasksAsian journal of Criminology (Asian J Criminol), 2023
Jianhong Liu
D. Li
153
4
0
11 Nov 2023
Symbolic Regression as Feature Engineering Method for Machine and Deep
  Learning Regression Tasks
Symbolic Regression as Feature Engineering Method for Machine and Deep Learning Regression Tasks
Assaf Shmuel
Oren Glickman
Teddy Lazebnik
268
16
0
10 Nov 2023
Massively-Parallel Heat Map Sorting and Applications To Explainable
  Clustering
Massively-Parallel Heat Map Sorting and Applications To Explainable Clustering
Sepideh Aghamolaei
Mohammad Ghodsi
135
0
0
14 Sep 2023
Trustworthy Representation Learning Across Domains
Trustworthy Representation Learning Across Domains
Ronghang Zhu
Dongliang Guo
Daiqing Qi
Zhixuan Chu
Xiang Yu
Sheng Li
FaMLAI4TS
237
2
0
23 Aug 2023
R-Cut: Enhancing Explainability in Vision Transformers with Relationship
  Weighted Out and Cut
R-Cut: Enhancing Explainability in Vision Transformers with Relationship Weighted Out and CutItalian National Conference on Sensors (INS), 2023
Yingjie Niu
Ming Ding
Maoning Ge
Robin Karlsson
Yuxiao Zhang
K. Takeda
ViT
124
5
0
18 Jul 2023
Neurosymbolic AI for Reasoning on Biomedical Knowledge Graphs
Neurosymbolic AI for Reasoning on Biomedical Knowledge Graphs
L. Delong
Ramon Fernández Mir
Zonglin Ji
Fiona Niamh Coulter Smith
Jacques D. Fleuriot
158
2
0
17 Jul 2023
Improving Explainability of Disentangled Representations using
  Multipath-Attribution Mappings
Improving Explainability of Disentangled Representations using Multipath-Attribution MappingsInternational Conference on Medical Imaging with Deep Learning (MIDL), 2023
Lukas Klein
João B. S. Carvalho
Mennatallah El-Assady
Paolo Penna
J. M. Buhmann
Paul F. Jaeger
117
5
0
15 Jun 2023
Sanity Checks for Saliency Methods Explaining Object Detectors
Sanity Checks for Saliency Methods Explaining Object Detectors
Deepan Padmanabhan
Paul G. Plöger
Octavio Arriaga
Matias Valdenegro-Toro
FAttAAMLXAI
201
3
0
04 Jun 2023
torchosr -- a PyTorch extension package for Open Set Recognition models
  evaluation in Python
torchosr -- a PyTorch extension package for Open Set Recognition models evaluation in PythonNeurocomputing (Neurocomputing), 2023
Joanna Komorniczak
Pawel Ksieniewicz
3DV
145
3
0
16 May 2023
MLHOps: Machine Learning for Healthcare Operations
MLHOps: Machine Learning for Healthcare Operations
Kristoffer Larsen
Vallijah Subasri
A. Krishnan
Cláudio Tinoco Mesquita
Diana Paez
Laleh Seyyed-Kalantari
Amalia Peix
LM&MAAI4TSVLM
209
6
0
04 May 2023
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep
  Neural Networks: The Case of Reject Option and Post-training Processing
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training ProcessingACM Computing Surveys (ACM Comput. Surv.), 2023
M. Hasan
Moloud Abdar
Abbas Khosravi
U. Aickelin
Pietro Lio
Ibrahim Hossain
Ashikur Rahman
Saeid Nahavandi
230
5
0
11 Apr 2023
A Scalable Space-efficient In-database Interpretability Framework for
  Embedding-based Semantic SQL Queries
A Scalable Space-efficient In-database Interpretability Framework for Embedding-based Semantic SQL Queries
P. Kudva
R. Bordawekar
Apoorva Nitsure
271
0
0
23 Feb 2023
Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
Neurosymbolic AI for Reasoning over Knowledge Graphs: A SurveyIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023
L. Delong
Ramon Fernández Mir
Jacques D. Fleuriot
NAI
425
28
0
14 Feb 2023
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
The Contextual Lasso: Sparse Linear Models via Deep Neural NetworksNeural Information Processing Systems (NeurIPS), 2023
Ryan Thompson
Amir Dezfouli
Robert Kohn
307
7
0
02 Feb 2023
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine LearningQuantum Machine Intelligence (QMI), 2023
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
301
30
0
22 Jan 2023
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAIFAtt
317
23
0
10 Nov 2022
Explainable Deep Learning to Profile Mitochondrial Disease Using High
  Dimensional Protein Expression Data
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data
Atif Khan
C. Lawless
Amy Vincent
Satish Pilla
S. Ramesh
A. Mcgough
127
0
0
31 Oct 2022
Explanation Method for Anomaly Detection on Mixed Numerical and
  Categorical Spaces
Explanation Method for Anomaly Detection on Mixed Numerical and Categorical Spaces
Iñigo López-Riobóo Botana
Carlos Eiras-Franco
Julio César Hernández Castro
Amparo Alonso-Betanzos
254
1
0
09 Sep 2022
Interpretable Time Series Clustering Using Local Explanations
Interpretable Time Series Clustering Using Local Explanations
Ozan Ozyegen
Nicholas Prayogo
Mucahit Cevik
Ayse Basar
FAttAI4TS
117
1
0
01 Aug 2022
From Correlation to Causation: Formalizing Interpretable Machine
  Learning as a Statistical Process
From Correlation to Causation: Formalizing Interpretable Machine Learning as a Statistical Process
Lukas Klein
Mennatallah El-Assady
Paul F. Jäger
CML
112
2
0
11 Jul 2022
A systematic review of biologically-informed deep learning models for
  cancer: fundamental trends for encoding and interpreting oncology data
A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology dataBMC Bioinformatics (BB), 2022
Magdalena Wysocka
Oskar Wysocki
Marie Zufferey
Dónal Landers
André Freitas
AI4CE
309
45
0
02 Jul 2022
Think About the Stakeholders First! Towards an Algorithmic Transparency
  Playbook for Regulatory Compliance
Think About the Stakeholders First! Towards an Algorithmic Transparency Playbook for Regulatory ComplianceData & Policy (DP), 2022
Andrew Bell
O. Nov
Julia Stoyanovich
142
30
0
10 Jun 2022
Can Requirements Engineering Support Explainable Artificial
  Intelligence? Towards a User-Centric Approach for Explainability Requirements
Can Requirements Engineering Support Explainable Artificial Intelligence? Towards a User-Centric Approach for Explainability Requirements
Umm-e-Habiba
Justus Bogner
Stefan Wagner
XAI
104
18
0
03 Jun 2022
Sparse Visual Counterfactual Explanations in Image Space
Sparse Visual Counterfactual Explanations in Image SpaceGerman Conference on Pattern Recognition (GCPR), 2022
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDLCML
307
32
0
16 May 2022
System Cards for AI-Based Decision-Making for Public Policy
System Cards for AI-Based Decision-Making for Public Policy
Furkan Gursoy
I. Kakadiaris
MLAU
151
20
0
01 Mar 2022
Testing Granger Non-Causality in Panels with Cross-Sectional
  Dependencies
Testing Granger Non-Causality in Panels with Cross-Sectional DependenciesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Lenon Minorics
Ali Caner Türkmen
D. Kernert
Patrick Bloebaum
Laurent Callot
Dominik Janzing
175
2
0
23 Feb 2022
Discrete and continuous representations and processing in deep learning:
  Looking forward
Discrete and continuous representations and processing in deep learning: Looking forwardAI Open (AO), 2022
Ruben Cartuyvels
Graham Spinks
Marie-Francine Moens
OCL
241
28
0
04 Jan 2022
Explainability Is in the Mind of the Beholder: Establishing the
  Foundations of Explainable Artificial Intelligence
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
209
27
0
29 Dec 2021
How to Find a Good Explanation for Clustering?
How to Find a Good Explanation for Clustering?
Sayan Bandyapadhyay
F. Fomin
P. Golovach
W. Lochet
Nidhi Purohit
Kirill Simonov
147
45
0
13 Dec 2021
TorchEsegeta: Framework for Interpretability and Explainability of
  Image-based Deep Learning Models
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
138
16
0
16 Oct 2021
FUTURE-AI: Guiding Principles and Consensus Recommendations for
  Trustworthy Artificial Intelligence in Medical Imaging
FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging
Karim Lekadira
Richard Osuala
C. Gallin
Noussair Lazrak
Kaisar Kushibar
...
Nickolas Papanikolaou
Zohaib Salahuddin
Henry C. Woodruff
Philippe Lambin
L. Martí-Bonmatí
AI4TS
311
78
0
20 Sep 2021
Logic Explained Networks
Logic Explained NetworksInternational Workshop on Neural-Symbolic Learning and Reasoning (NeSy), 2021
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lio
Marco Maggini
S. Melacci
146
86
0
11 Aug 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A
  Survey of Challenges and Solutions
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and SolutionsIEEE Access (IEEE Access), 2021
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaMLAILawOOD
201
34
0
20 Jul 2021
12
Next