ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12137
  4. Cited By
Projected Stochastic Gradient Langevin Algorithms for Constrained
  Sampling and Non-Convex Learning

Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning

22 December 2020
Andrew G. Lamperski
ArXiv (abs)PDFHTML

Papers citing "Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning"

20 / 20 papers shown
Title
Accelerating Constrained Sampling: A Large Deviations Approach
Accelerating Constrained Sampling: A Large Deviations Approach
Yingli Wang
Changwei Tu
Xiaoyu Wang
Lingjiong Zhu
18
0
0
09 Jun 2025
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Nian Yao
Pervez Ali
Xihua Tao
Lingjiong Zhu
75
1
0
24 Mar 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
112
0
0
26 Feb 2025
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Luiz F. O. Chamon
Mohammad Reza Karimi
Anna Korba
89
3
0
08 Jan 2025
Self-normalized Cramér-type Moderate Deviation of Stochastic Gradient
  Langevin Dynamics
Self-normalized Cramér-type Moderate Deviation of Stochastic Gradient Langevin Dynamics
Hongsheng Dai
Xiequan Fan
Jianya Lu
27
1
0
29 Oct 2024
How to beat a Bayesian adversary
How to beat a Bayesian adversary
Zihan Ding
Kexin Jin
J. Latz
Chenguang Liu
AAMLBDL
80
0
0
11 Jul 2024
Reflected Flow Matching
Reflected Flow Matching
Tianyu Xie
Yu Zhu
Longlin Yu
Tong Yang
Ziheng Cheng
Shiyue Zhang
Xiangyu Zhang
Cheng Zhang
84
6
0
26 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic
  Gradient Langevin Dynamics
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
65
5
0
13 May 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for
  Machine Unlearning
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
106
17
0
18 Jan 2024
Reflected Schrödinger Bridge for Constrained Generative Modeling
Reflected Schrödinger Bridge for Constrained Generative Modeling
Wei Deng
Yu Chen
Nicole Tianjiao Yang
Hengrong Du
Qi Feng
Ricky T. Q. Chen
54
8
0
06 Jan 2024
Constructing Semantics-Aware Adversarial Examples with Probabilistic
  Perspective
Constructing Semantics-Aware Adversarial Examples with Probabilistic Perspective
Andi Zhang
Mingtian Zhang
Damon J. Wischik
GANAAML
46
1
0
01 Jun 2023
Policy Gradient Algorithms for Robust MDPs with Non-Rectangular
  Uncertainty Sets
Policy Gradient Algorithms for Robust MDPs with Non-Rectangular Uncertainty Sets
Mengmeng Li
Daniel Kuhn
Tobias Sutter
67
11
0
30 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
97
4
0
25 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
68
0
0
23 May 2023
Efficient Sampling of Stochastic Differential Equations with Positive
  Semi-Definite Models
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
114
2
0
30 Mar 2023
Function Approximation with Randomly Initialized Neural Networks for
  Approximate Model Reference Adaptive Control
Function Approximation with Randomly Initialized Neural Networks for Approximate Model Reference Adaptive Control
Tyler Lekang
Andrew G. Lamperski
50
0
0
28 Mar 2023
Efficient Bayesian computation for low-photon imaging problems
Efficient Bayesian computation for low-photon imaging problems
Savvas Melidonis
P. Dobson
Y. Altmann
Marcelo Pereyra
K. Zygalakis
44
12
0
10 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
78
6
0
27 May 2022
Optimal Scaling for the Proximal Langevin Algorithm in High Dimensions
Optimal Scaling for the Proximal Langevin Algorithm in High Dimensions
Natesh S. Pillai
58
2
0
21 Apr 2022
Convergence Error Analysis of Reflected Gradient Langevin Dynamics for
  Globally Optimizing Non-Convex Constrained Problems
Convergence Error Analysis of Reflected Gradient Langevin Dynamics for Globally Optimizing Non-Convex Constrained Problems
Kanji Sato
Akiko Takeda
Reiichiro Kawai
Taiji Suzuki
57
6
0
19 Mar 2022
1