Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.12137
Cited By
Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
22 December 2020
Andrew G. Lamperski
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning"
20 / 20 papers shown
Title
Accelerating Constrained Sampling: A Large Deviations Approach
Yingli Wang
Changwei Tu
Xiaoyu Wang
Lingjiong Zhu
18
0
0
09 Jun 2025
Accelerating Langevin Monte Carlo Sampling: A Large Deviations Analysis
Nian Yao
Pervez Ali
Xihua Tao
Lingjiong Zhu
75
1
0
24 Mar 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
112
0
0
26 Feb 2025
Constrained Sampling with Primal-Dual Langevin Monte Carlo
Luiz F. O. Chamon
Mohammad Reza Karimi
Anna Korba
89
3
0
08 Jan 2025
Self-normalized Cramér-type Moderate Deviation of Stochastic Gradient Langevin Dynamics
Hongsheng Dai
Xiequan Fan
Jianya Lu
27
1
0
29 Oct 2024
How to beat a Bayesian adversary
Zihan Ding
Kexin Jin
J. Latz
Chenguang Liu
AAML
BDL
80
0
0
11 Jul 2024
Reflected Flow Matching
Tianyu Xie
Yu Zhu
Longlin Yu
Tong Yang
Ziheng Cheng
Shiyue Zhang
Xiangyu Zhang
Cheng Zhang
84
6
0
26 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
65
5
0
13 May 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
106
17
0
18 Jan 2024
Reflected Schrödinger Bridge for Constrained Generative Modeling
Wei Deng
Yu Chen
Nicole Tianjiao Yang
Hengrong Du
Qi Feng
Ricky T. Q. Chen
54
8
0
06 Jan 2024
Constructing Semantics-Aware Adversarial Examples with Probabilistic Perspective
Andi Zhang
Mingtian Zhang
Damon J. Wischik
GAN
AAML
46
1
0
01 Jun 2023
Policy Gradient Algorithms for Robust MDPs with Non-Rectangular Uncertainty Sets
Mengmeng Li
Daniel Kuhn
Tobias Sutter
67
11
0
30 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
97
4
0
25 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
68
0
0
23 May 2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
114
2
0
30 Mar 2023
Function Approximation with Randomly Initialized Neural Networks for Approximate Model Reference Adaptive Control
Tyler Lekang
Andrew G. Lamperski
50
0
0
28 Mar 2023
Efficient Bayesian computation for low-photon imaging problems
Savvas Melidonis
P. Dobson
Y. Altmann
Marcelo Pereyra
K. Zygalakis
44
12
0
10 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
78
6
0
27 May 2022
Optimal Scaling for the Proximal Langevin Algorithm in High Dimensions
Natesh S. Pillai
58
2
0
21 Apr 2022
Convergence Error Analysis of Reflected Gradient Langevin Dynamics for Globally Optimizing Non-Convex Constrained Problems
Kanji Sato
Akiko Takeda
Reiichiro Kawai
Taiji Suzuki
57
6
0
19 Mar 2022
1