Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03150
Cited By
Equivariant message passing for the prediction of tensorial properties and molecular spectra
5 February 2021
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equivariant message passing for the prediction of tensorial properties and molecular spectra"
50 / 81 papers shown
Title
Transferable Learning of Reaction Pathways from Geometric Priors
Juno Nam
Miguel Steiner
Max Misterka
Soojung Yang
Avni P. Singhal
Rafael Gómez-Bombarelli
32
0
0
21 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
C. Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
35
0
0
12 Feb 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
Symmetries-enhanced Multi-Agent Reinforcement Learning
N. Bousias
Stefanos Pertigkiozoglou
Kostas Daniilidis
George Pappas
AI4CE
73
0
0
02 Jan 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
42
2
0
23 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
57
0
0
23 Jul 2024
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
40
1
0
02 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Evaluating representation learning on the protein structure universe
Arian R. Jamasb
Alex Morehead
Chaitanya K. Joshi
Zuobai Zhang
Kieran Didi
...
Charles Harris
Jian Tang
Jianlin Cheng
Pietro Lio
Tom L. Blundell
SSL
38
12
0
19 Jun 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
50
0
0
10 Jun 2024
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
48
5
0
29 May 2024
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
85
1
0
20 May 2024
Graph as Point Set
Xiyuan Wang
Pan Li
Muhan Zhang
GNN
3DPC
PINN
40
4
0
05 May 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
29
3
0
25 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
26
5
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
31
2
0
07 Feb 2024
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
22
15
0
03 Dec 2023
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
32
1
0
17 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
31
3
0
02 Nov 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
40
13
0
28 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
30
16
0
15 Sep 2023
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
42
25
0
20 Jul 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
13
20
0
15 Jun 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
19
40
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
20
13
0
02 Jun 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
M. Schreiner
Ole Winther
Simon Olsson
OOD
AI4CE
41
13
0
29 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
29
53
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
27
48
0
20 Apr 2023
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
31
141
0
11 Apr 2023
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
27
33
0
07 Apr 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
36
3
0
05 Apr 2023
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
28
6
0
28 Mar 2023
Geometric Deep Learning for Molecular Crystal Structure Prediction
Michael Kilgour
J. Rogal
M. Tuckerman
13
16
0
17 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
26
10
0
27 Feb 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhiqiang Zhong
A. Barkova
Davide Mottin
22
8
0
16 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
26
79
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
28
8
0
06 Feb 2023
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
26
5
0
12 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
27
11
0
30 Nov 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
21
44
0
29 Nov 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
18
7
0
18 Oct 2022
1
2
Next