Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03150
Cited By
Equivariant message passing for the prediction of tensorial properties and molecular spectra
5 February 2021
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equivariant message passing for the prediction of tensorial properties and molecular spectra"
31 / 81 papers shown
Title
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
27
105
0
21 Sep 2022
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
24
20
0
23 Jul 2022
NeuralNEB -- Neural Networks can find Reaction Paths Fast
M. Schreiner
Arghya Bhowmik
T. Vegge
Peter Bjørn Jørgensen
Ole Winther
41
23
0
20 Jul 2022
e3nn: Euclidean Neural Networks
Mario Geiger
Tess E. Smidt
35
173
0
18 Jul 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
54
67
0
14 Jul 2022
Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction
Yang Jeong Park
GNN
16
1
0
26 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
36
441
0
15 Jun 2022
An Empirical Study of Retrieval-enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Jian Tang
Song Le
Qi Liu
13
0
0
01 Jun 2022
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
Yinan Huang
Xing Peng
Jianzhu Ma
Muhan Zhang
BDL
30
47
0
15 May 2022
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Xingang Peng
Shitong Luo
Jiaqi Guan
Qi Xie
Jian-wei Peng
Jianzhu Ma
25
176
0
15 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
31
65
0
06 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
25
86
0
28 Mar 2022
Equivariant Graph Attention Networks for Molecular Property Prediction
Tuan Le
Frank Noé
Djork-Arné Clevert
13
21
0
20 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni de Fabritiis
AI4CE
27
184
0
05 Feb 2022
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
16
36
0
01 Dec 2021
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
24
16
0
15 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs
Fang Wu
Dragomir R. Radev
Huabin Xing
ViT
14
54
0
04 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
13
19
0
20 Sep 2021
Heterogeneous relational message passing networks for molecular dynamics simulations
Zun Wang
Chong Wang
Sibo Zhao
Yong Xu
Shaogang Hao
Chang-Yu Hsieh
B. Gu
W. Duan
11
25
0
02 Sep 2021
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
30
286
0
26 Jul 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
O. Ganea
L. Pattanaik
Connor W. Coley
Regina Barzilay
K. Jensen
W. Green
Tommi Jaakkola
AI4CE
19
135
0
08 Jun 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
19
47
0
08 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
19
433
0
02 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
158
245
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
200
1,232
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
446
0
16 Sep 2019
Previous
1
2