ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05610
  4. Cited By
Searching for Fast Model Families on Datacenter Accelerators

Searching for Fast Model Families on Datacenter Accelerators

Computer Vision and Pattern Recognition (CVPR), 2021
10 February 2021
Sheng Li
Mingxing Tan
Ruoming Pang
Andrew Li
Liqun Cheng
Quoc V. Le
N. Jouppi
ArXiv (abs)PDFHTML

Papers citing "Searching for Fast Model Families on Datacenter Accelerators"

21 / 21 papers shown
Title
Composer: A Search Framework for Hybrid Neural Architecture Design
Composer: A Search Framework for Hybrid Neural Architecture Design
Bilge Acun
Prasoon Sinha
Newsha Ardalani
Sangmin Bae
Alicia Golden
Chien-Yu Lin
Meghana Madhyastha
Fei Sun
N. Yadwadkar
Carole-Jean Wu
184
1
0
01 Oct 2025
MSPT: A Lightweight Face Image Quality Assessment Method with Multi-stage Progressive Training
MSPT: A Lightweight Face Image Quality Assessment Method with Multi-stage Progressive Training
Xiongwei Xiao
Baoying Chen
Jishen Zeng
Jianquan Yang
CVBM
72
1
0
11 Aug 2025
Lightweight Deep Learning for Resource-Constrained Environments: A
  Survey
Lightweight Deep Learning for Resource-Constrained Environments: A Survey
Hou-I Liu
Marco Galindo
Hongxia Xie
Lai-Kuan Wong
Hong-Han Shuai
Yung-Hui Li
Wen-Huang Cheng
283
139
0
08 Apr 2024
Neural network scoring for efficient computing
Neural network scoring for efficient computing
Hugo Waltsburger
Erwan Libessart
Chengfang Ren
A. Kolar
R. Guinvarc’h
121
0
0
14 Oct 2023
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning
  with Hardware Support for Embeddings
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for EmbeddingsInternational Symposium on Computer Architecture (ISCA), 2023
N. Jouppi
George Kurian
Sheng Li
Peter C. Ma
R. Nagarajan
...
Brian Towles
C. Young
Xiaoping Zhou
Zongwei Zhou
David A. Patterson
BDLVLM
403
511
0
04 Apr 2023
Less is More: Selective Layer Finetuning with SubTuning
Less is More: Selective Layer Finetuning with SubTuning
Gal Kaplun
Andrey Gurevich
Tal Swisa
Mazor David
Shai Shalev-Shwartz
Eran Malach
183
10
0
13 Feb 2023
Tiered Pruning for Efficient Differentialble Inference-Aware Neural
  Architecture Search
Tiered Pruning for Efficient Differentialble Inference-Aware Neural Architecture Search
Slawomir Kierat
Mateusz Sieniawski
Denys Fridman
Chendi Yu
Szymon Migacz
Pawel M. Morkisz
A. Fit-Florea
3DPC
163
0
0
23 Sep 2022
Design Automation for Fast, Lightweight, and Effective Deep Learning
  Models: A Survey
Design Automation for Fast, Lightweight, and Effective Deep Learning Models: A Survey
Dalin Zhang
Kaixuan Chen
Yan Zhao
B. Yang
Li-Ping Yao
Christian S. Jensen
241
4
0
22 Aug 2022
Restructurable Activation Networks
Restructurable Activation Networks
Kartikeya Bhardwaj
James Ward
Caleb Tung
Dibakar Gope
Lingchuan Meng
Igor Fedorov
A. Chalfin
P. Whatmough
Danny Loh
222
6
0
17 Aug 2022
ScaleNet: Searching for the Model to Scale
ScaleNet: Searching for the Model to ScaleEuropean Conference on Computer Vision (ECCV), 2022
Jiyang Xie
Xiu Su
Shan You
Zhanyu Ma
Fei Wang
Chao Qian
191
5
0
15 Jul 2022
Revisiting Architecture-aware Knowledge Distillation: Smaller Models and
  Faster Search
Revisiting Architecture-aware Knowledge Distillation: Smaller Models and Faster Search
Taehyeon Kim
Heesoo Myeong
Se-Young Yun
148
3
0
27 Jun 2022
GPUNet: Searching the Deployable Convolution Neural Networks for GPUs
GPUNet: Searching the Deployable Convolution Neural Networks for GPUsComputer Vision and Pattern Recognition (CVPR), 2022
Linnan Wang
Chenhan D. Yu
Satish Salian
Slawomir Kierat
Szymon Migacz
A. Fit-Florea
110
11
0
26 Apr 2022
The Carbon Footprint of Machine Learning Training Will Plateau, Then
  Shrink
The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink
David A. Patterson
Joseph E. Gonzalez
Urs Holzle
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
233
333
0
11 Apr 2022
U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
  Search
U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture SearchEuropean Conference on Computer Vision (ECCV), 2022
A. C. Yüzügüler
Nikolaos Dimitriadis
P. Frossard
121
3
0
23 Mar 2022
AutoDistill: an End-to-End Framework to Explore and Distill
  Hardware-Efficient Language Models
AutoDistill: an End-to-End Framework to Explore and Distill Hardware-Efficient Language Models
Xiaofan Zhang
Zongwei Zhou
Deming Chen
Yu Emma Wang
143
12
0
21 Jan 2022
FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
Bichen Wu
Chaojian Li
Hang Zhang
Xiaoliang Dai
Peizhao Zhang
Matthew Yu
Jialiang Wang
Yingyan Lin
Peter Vajda
ViT
483
30
0
19 Nov 2021
ISyNet: Convolutional Neural Networks design for AI accelerator
ISyNet: Convolutional Neural Networks design for AI accelerator
Alexey Letunovskiy
Vladimir Korviakov
V. Polovnikov
Anastasiia Kargapoltseva
I. Mazurenko
Yepan Xiong
188
1
0
04 Sep 2021
A Full-Stack Search Technique for Domain Optimized Deep Learning
  Accelerators
A Full-Stack Search Technique for Domain Optimized Deep Learning AcceleratorsInternational Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021
Dan Zhang
Safeen Huda
Ebrahim M. Songhori
Kartik Prabhu
Quoc V. Le
Anna Goldie
Azalia Mirhoseini
215
54
0
26 May 2021
Measuring what Really Matters: Optimizing Neural Networks for TinyML
Measuring what Really Matters: Optimizing Neural Networks for TinyML
Lennart Heim
Andreas Biri
Zhongnan Qu
Lothar Thiele
184
32
0
21 Apr 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
657
866
0
21 Apr 2021
EfficientNetV2: Smaller Models and Faster Training
EfficientNetV2: Smaller Models and Faster TrainingInternational Conference on Machine Learning (ICML), 2021
Mingxing Tan
Quoc V. Le
EgoV
1.1K
3,570
0
01 Apr 2021
1