Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06062
Cited By
Deep Learning with Label Differential Privacy
11 February 2021
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning with Label Differential Privacy"
50 / 100 papers shown
Title
Differentially-Private Decision Trees and Provable Robustness to Data Poisoning
D. Vos
Jelle Vos
Tianyu Li
Z. Erkin
S. Verwer
FedML
11
1
0
24 May 2023
Personalized DP-SGD using Sampling Mechanisms
Geon Heo
Junseok Seo
Steven Euijong Whang
12
2
0
24 May 2023
Evaluating Privacy Leakage in Split Learning
Xinchi Qiu
Ilias Leontiadis
Luca Melis
Alex Sablayrolles
Pierre Stock
17
5
0
22 May 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
31
4
0
19 May 2023
PrivaScissors: Enhance the Privacy of Collaborative Inference through the Lens of Mutual Information
Lin Duan
Jingwei Sun
Yiran Chen
M. Gorlatova
16
2
0
17 May 2023
Learning from Aggregated Data: Curated Bags versus Random Bags
Lin Chen
Gang Fu
Amin Karbasi
Vahab Mirrokni
FedML
43
10
0
16 May 2023
MetaMorphosis: Task-oriented Privacy Cognizant Feature Generation for Multi-task Learning
Md. Adnan Arefeen
Zhouyu Li
M. Y. S. Uddin
Anupam Das
22
0
0
13 May 2023
DPMLBench: Holistic Evaluation of Differentially Private Machine Learning
Chengkun Wei
Ming-Hui Zhao
Zhikun Zhang
Min Chen
Wenlong Meng
Bodong Liu
Yuan-shuo Fan
Wenzhi Chen
22
11
0
10 May 2023
Differentially Private Attention Computation
Yeqi Gao
Zhao-quan Song
Xin Yang
42
19
0
08 May 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
9
6
0
28 Mar 2023
Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples
Jingwei Sun
Ziyue Xu
Dong Yang
V. Nath
Wenqi Li
Can Zhao
Daguang Xu
Yiran Chen
H. Roth
FedML
19
14
0
28 Mar 2023
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
23
0
0
07 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
On Provable Copyright Protection for Generative Models
Nikhil Vyas
Sham Kakade
Boaz Barak
10
87
0
21 Feb 2023
Learning From Biased Soft Labels
Hua Yuan
Ning Xu
Yuge Shi
Xin Geng
Yong Rui
FedML
16
6
0
16 Feb 2023
Label Inference Attack against Split Learning under Regression Setting
Shangyu Xie
Xin Yang
Yuanshun Yao
Tianyi Liu
Taiqing Wang
Jiankai Sun
FedML
16
9
0
18 Jan 2023
Simple Binary Hypothesis Testing under Local Differential Privacy and Communication Constraints
Ankit Pensia
Amir-Reza Asadi
Varun Jog
Po-Ling Loh
12
12
0
09 Jan 2023
Regression with Label Differential Privacy
Badih Ghazi
Pritish Kamath
Ravi Kumar
Ethan Leeman
Pasin Manurangsi
A. Varadarajan
Chiyuan Zhang
16
18
0
12 Dec 2022
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels
Huaxi Huang
Hui-Sung Kang
Sheng Liu
Olivier Salvado
Thierry Rakotoarivelo
Dadong Wang
Tongliang Liu
NoLa
20
7
0
07 Dec 2022
Vertical Federated Learning: A Structured Literature Review
Afsana Khan
M. T. Thij
A. Wilbik
FedML
25
9
0
01 Dec 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
19
14
0
21 Nov 2022
Private Data Valuation and Fair Payment in Data Marketplaces
Zhihua Tian
Jian-wei Liu
J. Li
Xinle Cao
R. Jia
Jun Kong
Mengdi Liu
Kui Ren
TDI
19
12
0
17 Oct 2022
Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes
Zhaowei Zhu
Yuanshun Yao
Jiankai Sun
Hanguang Li
Y. Liu
14
21
0
06 Oct 2022
DPAUC: Differentially Private AUC Computation in Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Junyuan Xie
Di Wu
Chong-Jun Wang
FedML
17
11
0
25 Aug 2022
Differentially Private Partial Set Cover with Applications to Facility Location
George Z. Li
Dung Nguyen
A. Vullikanti
16
4
0
21 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
34
102
0
30 Jun 2022
How unfair is private learning ?
Amartya Sanyal
Yaxian Hu
Fanny Yang
FaML
FedML
14
22
0
08 Jun 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
9
5
0
07 Jun 2022
Differentially Private AUC Computation in Vertical Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Junyuan Xie
Di Wu
Chong-Jun Wang
FedML
35
5
0
24 May 2022
GeoPointGAN: Synthetic Spatial Data with Local Label Differential Privacy
Teddy Cunningham
Konstantin Klemmer
Hongkai Wen
Hakan Ferhatosmanoglu
4
10
0
18 May 2022
Differentially Private Learning with Margin Guarantees
Raef Bassily
M. Mohri
A. Suresh
15
9
0
21 Apr 2022
Just Fine-tune Twice: Selective Differential Privacy for Large Language Models
Weiyan Shi
Ryan Shea
Si-An Chen
Chiyuan Zhang
R. Jia
Zhou Yu
AAML
18
38
0
15 Apr 2022
Similarity-based Label Inference Attack against Training and Inference of Split Learning
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
11
26
0
10 Mar 2022
Differentially Private Label Protection in Split Learning
Xin Yang
Jiankai Sun
Yuanshun Yao
Junyuan Xie
Chong-Jun Wang
FedML
26
36
0
04 Mar 2022
Label Leakage and Protection from Forward Embedding in Vertical Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Chong-Jun Wang
FedML
11
37
0
02 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
13
15
0
25 Feb 2022
ExPLoit: Extracting Private Labels in Split Learning
Sanjay Kariyappa
Moinuddin K. Qureshi
FedML
20
22
0
25 Nov 2021
Masked LARk: Masked Learning, Aggregation and Reporting worKflow
Joseph J. Pfeiffer
Denis Xavier Charles
Davis Gilton
Young Hun Jung
Mehul Parsana
Erik Anderson
16
11
0
27 Oct 2021
Label differential privacy via clustering
Hossein Esfandiari
Vahab Mirrokni
Umar Syed
Sergei Vassilvitskii
FedML
11
26
0
05 Oct 2021
Antipodes of Label Differential Privacy: PATE and ALIBI
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
8
62
0
07 Jun 2021
A Lightweight Privacy-Preserving Scheme Using Label-based Pixel Block Mixing for Image Classification in Deep Learning
Yuexin Xiang
Tiantian Li
Wei Ren
Tianqing Zhu
Kim-Kwang Raymond Choo
28
4
0
19 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
295
5,761
0
29 Apr 2021
Leveraging Public Data for Practical Private Query Release
Terrance Liu
G. Vietri
Thomas Steinke
Jonathan R. Ullman
Zhiwei Steven Wu
148
58
0
17 Feb 2021
Label Leakage and Protection in Two-party Split Learning
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
122
139
0
17 Feb 2021
Privacy-preserving Data Sharing on Vertically Partitioned Data
Razane Tajeddine
Joonas Jälkö
Samuel Kaski
Antti Honkela
FedML
16
8
0
19 Oct 2020
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
46
86
0
25 Aug 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
128
178
0
28 Jul 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
134
420
0
29 Nov 2018
Efficient Per-Example Gradient Computations
Ian Goodfellow
166
73
0
07 Oct 2015
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
571
0
08 Dec 2012
Previous
1
2