ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07542
  4. Cited By
High-Dimensional Gaussian Process Inference with Derivatives

High-Dimensional Gaussian Process Inference with Derivatives

15 February 2021
Filip de Roos
A. Gessner
Philipp Hennig
    GP
ArXiv (abs)PDFHTML

Papers citing "High-Dimensional Gaussian Process Inference with Derivatives"

11 / 11 papers shown
Title
Scaling Gaussian Process Regression with Full Derivative Observations
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDLGP
62
0
0
14 May 2025
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Unexpected Improvements to Expected Improvement for Bayesian Optimization
Sebastian Ament
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
92
82
0
08 Jan 2025
Linear cost and exponentially convergent approximation of Gaussian Matérn processes on intervals
Linear cost and exponentially convergent approximation of Gaussian Matérn processes on intervals
David Bolin
Vaibhav Mehandiratta
Alexandre B. Simas
56
1
0
16 Oct 2024
The Hyperdimensional Transform for Distributional Modelling, Regression
  and Classification
The Hyperdimensional Transform for Distributional Modelling, Regression and Classification
Pieter Dewulf
B. De Baets
Michiel Stock
74
3
0
14 Nov 2023
Random Function Descent
Random Function Descent
Felix Benning
L. Döring
39
0
0
02 May 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian
  Processes
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes
Yifan Chen
H. Owhadi
F. Schafer
96
31
0
03 Apr 2023
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
  Processes
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
72
6
0
14 Oct 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
69
11
0
25 Aug 2022
Scalable First-Order Bayesian Optimization via Structured Automatic
  Differentiation
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
Sebastian Ament
Carla P. Gomes
62
9
0
16 Jun 2022
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
118
19
0
22 Apr 2021
1