Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07845
Cited By
MARINA: Faster Non-Convex Distributed Learning with Compression
15 February 2021
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MARINA: Faster Non-Convex Distributed Learning with Compression"
50 / 74 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
28
0
0
12 May 2025
BurTorch: Revisiting Training from First Principles by Coupling Autodiff, Math Optimization, and Systems
Konstantin Burlachenko
Peter Richtárik
AI4CE
44
0
0
18 Mar 2025
Robust Federated Learning with Global Sensitivity Estimation for Financial Risk Management
Lei Zhao
Lin Cai
Wu-Sheng Lu
FedML
78
0
0
24 Feb 2025
MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
Igor Sokolov
Peter Richtárik
77
1
0
22 Dec 2024
Accelerated Methods with Compressed Communications for Distributed Optimization Problems under Data Similarity
Dmitry Bylinkin
Aleksandr Beznosikov
72
1
0
21 Dec 2024
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
64
0
0
26 Nov 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
30
0
0
11 Nov 2024
On the Convergence of FedProx with Extrapolation and Inexact Prox
Hanmin Li
Peter Richtárik
FedML
27
0
0
02 Oct 2024
Distributed Difference of Convex Optimization
Vivek Khatana
M. Salapaka
25
0
0
23 Jul 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
33
1
0
25 Mar 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
50
2
0
11 Mar 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
39
3
0
07 Mar 2024
Optimal Data Splitting in Distributed Optimization for Machine Learning
Daniil Medyakov
Gleb Molodtsov
Aleksandr Beznosikov
Alexander Gasnikov
18
1
0
15 Jan 2024
Activations and Gradients Compression for Model-Parallel Training
Mikhail Rudakov
Aleksandr Beznosikov
Yaroslav Kholodov
Alexander Gasnikov
18
1
0
15 Jan 2024
Federated Learning While Providing Model as a Service: Joint Training and Inference Optimization
Pengchao Han
Shiqiang Wang
Yang Jiao
Jianwei Huang
FedML
19
5
0
20 Dec 2023
Federated Learning is Better with Non-Homomorphic Encryption
Konstantin Burlachenko
Abdulmajeed Alrowithi
Fahad Ali Albalawi
Peter Richtárik
FedML
32
6
0
04 Dec 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
35
5
0
15 Oct 2023
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity
Pengyun Yue
Hanzheng Zhao
Cong Fang
Di He
Liwei Wang
Zhouchen Lin
Song-Chun Zhu
32
1
0
23 Sep 2023
AQUILA: Communication Efficient Federated Learning with Adaptive Quantization in Device Selection Strategy
Zihao Zhao
Yuzhu Mao
Zhenpeng Shi
Yang Liu
Tian-Shing Lan
Wenbo Ding
Xiaoping Zhang
13
9
0
01 Aug 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
26
6
0
28 Jun 2023
Adaptive Compression in Federated Learning via Side Information
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
23
9
0
22 Jun 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
23
2
0
24 May 2023
Momentum Provably Improves Error Feedback!
Ilyas Fatkhullin
A. Tyurin
Peter Richtárik
26
19
0
24 May 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
21
12
0
17 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
26
7
0
12 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
Sparse-SignSGD with Majority Vote for Communication-Efficient Distributed Learning
Chanho Park
Namyoon Lee
FedML
14
3
0
15 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
21
18
0
01 Feb 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
22
17
0
16 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
32
4
0
25 Nov 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
29
9
0
26 Oct 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
38
21
0
30 Sep 2022
Lottery Aware Sparsity Hunting: Enabling Federated Learning on Resource-Limited Edge
Sara Babakniya
Souvik Kundu
Saurav Prakash
Yue Niu
Salman Avestimehr
FedML
13
9
0
27 Aug 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
34
6
0
22 Aug 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
27
12
0
10 Aug 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
15
20
0
08 Jul 2022
Communication-Efficient Federated Learning With Data and Client Heterogeneity
Hossein Zakerinia
Shayan Talaei
Giorgi Nadiradze
Dan Alistarh
FedML
19
7
0
20 Jun 2022
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
Zhize Li
Haoyu Zhao
Boyue Li
Yuejie Chi
FedML
22
41
0
20 Jun 2022
Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
11
10
0
19 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
25
12
0
13 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
25
25
0
08 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
30
16
0
07 Jun 2022
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees
Jue Wang
Binhang Yuan
Luka Rimanic
Yongjun He
Tri Dao
Beidi Chen
Christopher Ré
Ce Zhang
AI4CE
11
11
0
02 Jun 2022
Federated Learning with a Sampling Algorithm under Isoperimetry
Lukang Sun
Adil Salim
Peter Richtárik
FedML
8
7
0
02 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
19
0
0
01 Jun 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
64
13
0
26 May 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
25
21
0
27 Apr 2022
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
FedML
25
27
0
15 Mar 2022
1
2
Next