Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2102.07845
Cited By
v1
v2
v3 (latest)
MARINA: Faster Non-Convex Distributed Learning with Compression
International Conference on Machine Learning (ICML), 2021
15 February 2021
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MARINA: Faster Non-Convex Distributed Learning with Compression"
25 / 75 papers shown
Title
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
229
22
0
27 Apr 2022
Privacy-Aware Compression for Federated Data Analysis
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
FedML
236
28
0
15 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
274
58
0
15 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
256
18
0
07 Feb 2022
DASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity, and No Client Synchronization
Alexander Tyurin
Peter Richtárik
336
21
0
02 Feb 2022
3PC: Three Point Compressors for Communication-Efficient Distributed Training and a Better Theory for Lazy Aggregation
International Conference on Machine Learning (ICML), 2022
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
Elnur Gasanov
Zhize Li
Eduard A. Gorbunov
182
33
0
02 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Neural Information Processing Systems (NeurIPS), 2022
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
225
62
0
31 Jan 2022
Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization
Grigory Malinovsky
Konstantin Mishchenko
Peter Richtárik
FedML
141
28
0
26 Jan 2022
Faster Rates for Compressed Federated Learning with Client-Variance Reduction
SIAM Journal on Mathematics of Data Science (SIMODS), 2021
Haoyu Zhao
Konstantin Burlachenko
Zhize Li
Peter Richtárik
FedML
325
19
0
24 Dec 2021
DSAG: A mixed synchronous-asynchronous iterative method for straggler-resilient learning
IEEE Transactions on Communications (IEEE Trans. Commun.), 2021
A. Severinson
E. Rosnes
S. E. Rouayheb
Alexandre Graell i Amat
151
2
0
27 Nov 2021
Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Aleksandr Beznosikov
Peter Richtárik
Michael Diskin
Max Ryabinin
Alexander Gasnikov
FedML
238
22
0
07 Oct 2021
EF21 with Bells & Whistles: Six Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
301
47
0
07 Oct 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
228
55
0
19 Aug 2021
FedPAGE: A Fast Local Stochastic Gradient Method for Communication-Efficient Federated Learning
Haoyu Zhao
Zhize Li
Peter Richtárik
FedML
147
34
0
10 Aug 2021
CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression
Neural Information Processing Systems (NeurIPS), 2021
Zhize Li
Peter Richtárik
160
35
0
20 Jul 2021
Secure Distributed Training at Scale
International Conference on Machine Learning (ICML), 2021
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
303
17
0
21 Jun 2021
EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback
Neural Information Processing Systems (NeurIPS), 2021
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
156
172
0
09 Jun 2021
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Neural Information Processing Systems (NeurIPS), 2021
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
140
119
0
08 Jun 2021
Theoretically Better and Numerically Faster Distributed Optimization with Smoothness-Aware Quantization Techniques
Neural Information Processing Systems (NeurIPS), 2021
Bokun Wang
M. Safaryan
Peter Richtárik
MQ
156
11
0
07 Jun 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
International Conference on Machine Learning (ICML), 2021
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
188
84
0
05 Jun 2021
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Neural Information Processing Systems (NeurIPS), 2021
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
304
43
0
04 Mar 2021
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
290
101
0
11 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
429
91
0
07 Dec 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
International Conference on Machine Learning (ICML), 2020
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
288
149
0
25 Aug 2020
Differentially Quantized Gradient Methods
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2020
Chung-Yi Lin
V. Kostina
B. Hassibi
MQ
270
8
0
06 Feb 2020
Previous
1
2