Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2102.07845
Cited By
v1
v2
v3 (latest)
MARINA: Faster Non-Convex Distributed Learning with Compression
International Conference on Machine Learning (ICML), 2021
15 February 2021
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MARINA: Faster Non-Convex Distributed Learning with Compression"
50 / 75 papers shown
Title
An Efficient Gradient-Aware Error-Bounded Lossy Compressor for Federated Learning
Zhijing Ye
Sheng Di
Jiamin Wang
Zhiqing Zhong
Zhaorui Zhang
Xiaodong Yu
FedML
148
0
0
07 Nov 2025
Coded Robust Aggregation for Distributed Learning under Byzantine Attacks
Chengxi Li
Ming Xiao
Mikael Skoglund
AAML
OOD
128
0
0
17 May 2025
Bant: Byzantine Antidote via Trial Function and Trust Scores
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
553
1
0
12 May 2025
BurTorch: Revisiting Training from First Principles by Coupling Autodiff, Math Optimization, and Systems
Konstantin Burlachenko
Peter Richtárik
AI4CE
184
0
0
18 Mar 2025
Robust Federated Learning with Global Sensitivity Estimation for Financial Risk Management
Lei Zhao
Lin Cai
Wu-Sheng Lu
FedML
257
2
0
24 Feb 2025
MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
Igor Sokolov
Peter Richtárik
283
1
0
22 Dec 2024
Accelerated Methods with Compressed Communications for Distributed Optimization Problems under Data Similarity
AAAI Conference on Artificial Intelligence (AAAI), 2024
Dmitry Bylinkin
Aleksandr Beznosikov
383
1
0
21 Dec 2024
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
278
0
0
26 Nov 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
412
1
0
11 Nov 2024
On the Convergence of FedProx with Extrapolation and Inexact Prox
Hanmin Li
Peter Richtárik
FedML
257
3
0
02 Oct 2024
Distributed Difference of Convex Optimization
Vivek Khatana
M. Salapaka
210
0
0
23 Jul 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
191
2
0
25 Mar 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
213
3
0
11 Mar 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
Artavazd Maranjyan
Peter Richtárik
347
6
0
07 Mar 2024
Optimal Data Splitting in Distributed Optimization for Machine Learning
Doklady. Mathematics (Dokl. Math.), 2023
Daniil Medyakov
Gleb Molodtsov
Aleksandr Beznosikov
Alexander Gasnikov
234
4
0
15 Jan 2024
Activations and Gradients Compression for Model-Parallel Training
Doklady. Mathematics (Dokl. Math.), 2023
Mikhail Rudakov
Aleksandr Beznosikov
Yaroslav Kholodov
Alexander Gasnikov
323
5
0
15 Jan 2024
Federated Learning While Providing Model as a Service: Joint Training and Inference Optimization
Pengchao Han
Maroun Touma
Yang Jiao
Jianwei Huang
FedML
257
12
0
20 Dec 2023
Federated Learning is Better with Non-Homomorphic Encryption
Konstantin Burlachenko
Abdulmajeed Alrowithi
Fahad Ali Albalawi
Peter Richtárik
FedML
220
6
0
04 Dec 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
300
11
0
15 Oct 2023
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity
Pengyun Yue
Hanzheng Zhao
Cong Fang
Di He
Liwei Wang
Zhouchen Lin
Song-Chun Zhu
188
1
0
23 Sep 2023
AQUILA: Communication Efficient Federated Learning with Adaptive Quantization in Device Selection Strategy
IEEE Transactions on Mobile Computing (IEEE TMC), 2023
Zihao Zhao
Yuzhu Mao
Zhenpeng Shi
Yang Liu
Tian-Shing Lan
Wenbo Ding
Xiaoping Zhang
304
17
0
01 Aug 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
International Conference on Machine Learning (ICML), 2023
Egor Shulgin
Peter Richtárik
AI4CE
324
8
0
28 Jun 2023
Adaptive Compression in Federated Learning via Side Information
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
140
17
0
22 Jun 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
178
2
0
24 May 2023
Momentum Provably Improves Error Feedback!
Neural Information Processing Systems (NeurIPS), 2023
Ilyas Fatkhullin
Alexander Tyurin
Peter Richtárik
285
37
0
24 May 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
IEEE Journal on Selected Topics in Signal Processing (JSTSP), 2023
Boyue Li
Yuejie Chi
157
17
0
17 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
355
9
0
12 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
International Conference on Machine Learning (ICML), 2023
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
208
7
0
23 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Avetik G. Karagulyan
Peter Richtárik
FedML
227
6
0
08 Mar 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Neural Information Processing Systems (NeurIPS), 2023
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
260
12
0
15 Feb 2023
Sparse-SignSGD with Majority Vote for Communication-Efficient Distributed Learning
International Symposium on Information Theory (ISIT), 2023
Chanho Park
Namyoon Lee
FedML
144
6
0
15 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
International Conference on Machine Learning (ICML), 2023
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
281
33
0
01 Feb 2023
Federated Learning with Flexible Control
IEEE Conference on Computer Communications (INFOCOM), 2022
Maroun Touma
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
210
20
0
16 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
188
6
0
25 Nov 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Neural Information Processing Systems (NeurIPS), 2022
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
187
15
0
26 Oct 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
International Conference on Machine Learning (ICML), 2022
Kaja Gruntkowska
Alexander Tyurin
Peter Richtárik
350
31
0
30 Sep 2022
Lottery Aware Sparsity Hunting: Enabling Federated Learning on Resource-Limited Edge
Sara Babakniya
Souvik Kundu
Saurav Prakash
Yue Niu
Salman Avestimehr
FedML
229
15
0
27 Aug 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Journal of machine learning research (JMLR), 2022
Zhize Li
Jian Li
261
9
0
22 Aug 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
336
15
0
10 Aug 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Neural Information Processing Systems (NeurIPS), 2022
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
245
23
0
08 Jul 2022
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
Neural Information Processing Systems (NeurIPS), 2022
Zhize Li
Haoyu Zhao
Boyue Li
Yuejie Chi
FedML
212
49
0
20 Jun 2022
Communication-Efficient Federated Learning With Data and Client Heterogeneity
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Hossein Zakerinia
Shayan Talaei
Giorgi Nadiradze
Dan Alistarh
FedML
403
12
0
20 Jun 2022
Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
219
11
0
19 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
International Conference on Machine Learning (ICML), 2022
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
209
23
0
13 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Neural Information Processing Systems (NeurIPS), 2022
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
311
31
0
08 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
167
21
0
07 Jun 2022
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees
Neural Information Processing Systems (NeurIPS), 2022
Jue Wang
Binhang Yuan
Luka Rimanic
Yongjun He
Tri Dao
Beidi Chen
Christopher Ré
Ce Zhang
AI4CE
378
18
0
02 Jun 2022
Federated Learning with a Sampling Algorithm under Isoperimetry
Lukang Sun
Adil Salim
Peter Richtárik
FedML
229
8
0
02 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
247
0
0
01 Jun 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
325
14
0
26 May 2022
1
2
Next