ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01678
  4. Cited By
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)

Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)

2 March 2021
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
    GAN
ArXivPDFHTML

Papers citing "Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)"

33 / 33 papers shown
Title
Time-Causal VAE: Robust Financial Time Series Generator
Time-Causal VAE: Robust Financial Time Series Generator
Beatrice Acciaio
Stephan Eckstein
Songyan Hou
AI4TS
30
2
0
05 Nov 2024
Variational Neural Stochastic Differential Equations with Change Points
Variational Neural Stochastic Differential Equations with Change Points
Yousef El-Laham
Zhongchang Sun
Haibei Zhu
Tucker Balch
Svitlana Vyetrenko
21
0
0
01 Nov 2024
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
41
0
0
10 Oct 2024
Generative Modelling via Quantile Regression
Generative Modelling via Quantile Regression
Johannes Schmidt-Hieber
Petr Zamolodtchikov
24
0
0
06 Sep 2024
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
29
0
0
16 Jul 2024
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Nikita Kornilov
Petr Mokrov
Alexander Gasnikov
Alexander Korotin
26
10
0
19 Mar 2024
Adversarial Score Distillation: When score distillation meets GAN
Adversarial Score Distillation: When score distillation meets GAN
Min Wei
Jingkai Zhou
Junyao Sun
Xuesong Zhang
DiffM
13
8
0
01 Dec 2023
Adversarial Reweighting Guided by Wasserstein Distance for Bias
  Mitigation
Adversarial Reweighting Guided by Wasserstein Distance for Bias Mitigation
Xuan Zhao
Simone Fabbrizzi
Paula Reyero Lobo
Siamak Ghodsi
Klaus Broelemann
Steffen Staab
Gjergji Kasneci
23
1
0
21 Nov 2023
Offline Imitation from Observation via Primal Wasserstein State
  Occupancy Matching
Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching
Kai Yan
A. Schwing
Yu-xiong Wang
OffRL
16
0
0
02 Nov 2023
Imitation Learning from Observation through Optimal Transport
Imitation Learning from Observation through Optimal Transport
Wei-Di Chang
Scott Fujimoto
D. Meger
Gregory Dudek
22
4
0
02 Oct 2023
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OOD
OT
13
31
0
28 Jun 2023
GANs Settle Scores!
GANs Settle Scores!
Siddarth Asokan
Nishanth Shetty
Aadithya Srikanth
C. Seelamantula
32
0
0
02 Jun 2023
Scalable Optimal Transport Methods in Machine Learning: A Contemporary
  Survey
Scalable Optimal Transport Methods in Machine Learning: A Contemporary Survey
Abdelwahed Khamis
Russell Tsuchida
Mohamed Tarek
V. Rolland
Lars Petersson
OT
43
12
0
08 May 2023
Variational Diffusion Auto-encoder: Latent Space Extraction from
  Pre-trained Diffusion Models
Variational Diffusion Auto-encoder: Latent Space Extraction from Pre-trained Diffusion Models
Georgios Batzolis
Jan Stanczuk
Carola-Bibiane Schönlieb
DiffM
20
0
0
24 Apr 2023
A survey and taxonomy of loss functions in machine learning
A survey and taxonomy of loss functions in machine learning
Lorenzo Ciampiconi
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
MU
FaML
9
25
0
13 Jan 2023
Adversarial Bayesian Simulation
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GAN
BDL
22
5
0
25 Aug 2022
Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?
Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?
Alexander Korotin
Alexander Kolesov
Evgeny Burnaev
OT
17
26
0
15 Jun 2022
UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired
  image-to-image translation
UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation
D. Torbunov
Yi Huang
Haiwang Yu
Jin-zhi Huang
Shinjae Yoo
Meifeng Lin
B. Viren
Yihui Ren
ViT
23
78
0
04 Mar 2022
Rates of convergence for nonparametric estimation of singular
  distributions using generative adversarial networks
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
26
4
0
07 Feb 2022
Parameter tuning and model selection in optimal transport with semi-dual
  Brenier formulation
Parameter tuning and model selection in optimal transport with semi-dual Brenier formulation
A. Vacher
Franccois-Xavier Vialard
OT
11
3
0
14 Dec 2021
Wasserstein Patch Prior for Image Superresolution
Wasserstein Patch Prior for Image Superresolution
J. Hertrich
Antoine Houdard
C. Redenbach
SupR
MDE
15
21
0
27 Sep 2021
Manifold-preserved GANs
Manifold-preserved GANs
Haozhe Liu
Hanbang Liang
Xianxu Hou
Haoqian Wu
Feng Liu
Linlin Shen
41
5
0
18 Sep 2021
Rethinking Multidimensional Discriminator Output for Generative
  Adversarial Networks
Rethinking Multidimensional Discriminator Output for Generative Adversarial Networks
M. Dai
Haibin Hang
A. Srivastava
16
3
0
08 Sep 2021
Wasserstein GANs with Gradient Penalty Compute Congested Transport
Wasserstein GANs with Gradient Penalty Compute Congested Transport
Tristan Milne
A. Nachman
OT
14
8
0
01 Sep 2021
Regularising Inverse Problems with Generative Machine Learning Models
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
21
34
0
22 Jul 2021
Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
  Benchmark
Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Alexander N. Filippov
Evgeny Burnaev
OT
21
81
0
03 Jun 2021
Adversarial Intrinsic Motivation for Reinforcement Learning
Adversarial Intrinsic Motivation for Reinforcement Learning
Ishan Durugkar
Mauricio Tec
S. Niekum
Peter Stone
OOD
19
36
0
27 May 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
189
260
0
18 Apr 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
14
220
0
09 Mar 2021
On Transportation of Mini-batches: A Hierarchical Approach
On Transportation of Mini-batches: A Hierarchical Approach
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
6
18
0
11 Feb 2021
Exploiting Chain Rule and Bayes' Theorem to Compare Probability
  Distributions
Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions
Huangjie Zheng
Mingyuan Zhou
OT
17
29
0
28 Dec 2020
A Systematic Survey of Regularization and Normalization in GANs
A Systematic Survey of Regularization and Normalization in GANs
Ziqiang Li
Muhammad Usman
Rentuo Tao
Pengfei Xia
Xintian Wu
Huanhuan Chen
Bin Li
22
49
0
19 Aug 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
264
10,344
0
12 Dec 2018
1