Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01678
Cited By
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
2 March 2021
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)"
33 / 33 papers shown
Title
Time-Causal VAE: Robust Financial Time Series Generator
Beatrice Acciaio
Stephan Eckstein
Songyan Hou
AI4TS
30
2
0
05 Nov 2024
Variational Neural Stochastic Differential Equations with Change Points
Yousef El-Laham
Zhongchang Sun
Haibei Zhu
Tucker Balch
Svitlana Vyetrenko
21
0
0
01 Nov 2024
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
41
0
0
10 Oct 2024
Generative Modelling via Quantile Regression
Johannes Schmidt-Hieber
Petr Zamolodtchikov
24
0
0
06 Sep 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
29
0
0
16 Jul 2024
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Nikita Kornilov
Petr Mokrov
Alexander Gasnikov
Alexander Korotin
26
10
0
19 Mar 2024
Adversarial Score Distillation: When score distillation meets GAN
Min Wei
Jingkai Zhou
Junyao Sun
Xuesong Zhang
DiffM
13
8
0
01 Dec 2023
Adversarial Reweighting Guided by Wasserstein Distance for Bias Mitigation
Xuan Zhao
Simone Fabbrizzi
Paula Reyero Lobo
Siamak Ghodsi
Klaus Broelemann
Steffen Staab
Gjergji Kasneci
23
1
0
21 Nov 2023
Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching
Kai Yan
A. Schwing
Yu-xiong Wang
OffRL
16
0
0
02 Nov 2023
Imitation Learning from Observation through Optimal Transport
Wei-Di Chang
Scott Fujimoto
D. Meger
Gregory Dudek
22
4
0
02 Oct 2023
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OOD
OT
13
31
0
28 Jun 2023
GANs Settle Scores!
Siddarth Asokan
Nishanth Shetty
Aadithya Srikanth
C. Seelamantula
32
0
0
02 Jun 2023
Scalable Optimal Transport Methods in Machine Learning: A Contemporary Survey
Abdelwahed Khamis
Russell Tsuchida
Mohamed Tarek
V. Rolland
Lars Petersson
OT
43
12
0
08 May 2023
Variational Diffusion Auto-encoder: Latent Space Extraction from Pre-trained Diffusion Models
Georgios Batzolis
Jan Stanczuk
Carola-Bibiane Schönlieb
DiffM
20
0
0
24 Apr 2023
A survey and taxonomy of loss functions in machine learning
Lorenzo Ciampiconi
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
MU
FaML
9
25
0
13 Jan 2023
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GAN
BDL
22
5
0
25 Aug 2022
Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?
Alexander Korotin
Alexander Kolesov
Evgeny Burnaev
OT
17
26
0
15 Jun 2022
UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation
D. Torbunov
Yi Huang
Haiwang Yu
Jin-zhi Huang
Shinjae Yoo
Meifeng Lin
B. Viren
Yihui Ren
ViT
23
78
0
04 Mar 2022
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
26
4
0
07 Feb 2022
Parameter tuning and model selection in optimal transport with semi-dual Brenier formulation
A. Vacher
Franccois-Xavier Vialard
OT
11
3
0
14 Dec 2021
Wasserstein Patch Prior for Image Superresolution
J. Hertrich
Antoine Houdard
C. Redenbach
SupR
MDE
15
21
0
27 Sep 2021
Manifold-preserved GANs
Haozhe Liu
Hanbang Liang
Xianxu Hou
Haoqian Wu
Feng Liu
Linlin Shen
41
5
0
18 Sep 2021
Rethinking Multidimensional Discriminator Output for Generative Adversarial Networks
M. Dai
Haibin Hang
A. Srivastava
16
3
0
08 Sep 2021
Wasserstein GANs with Gradient Penalty Compute Congested Transport
Tristan Milne
A. Nachman
OT
14
8
0
01 Sep 2021
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
21
34
0
22 Jul 2021
Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Alexander N. Filippov
Evgeny Burnaev
OT
21
81
0
03 Jun 2021
Adversarial Intrinsic Motivation for Reinforcement Learning
Ishan Durugkar
Mauricio Tec
S. Niekum
Peter Stone
OOD
19
36
0
27 May 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
189
260
0
18 Apr 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
14
220
0
09 Mar 2021
On Transportation of Mini-batches: A Hierarchical Approach
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
6
18
0
11 Feb 2021
Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions
Huangjie Zheng
Mingyuan Zhou
OT
17
29
0
28 Dec 2020
A Systematic Survey of Regularization and Normalization in GANs
Ziqiang Li
Muhammad Usman
Rentuo Tao
Pengfei Xia
Xintian Wu
Huanhuan Chen
Bin Li
22
49
0
19 Aug 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
264
10,344
0
12 Dec 2018
1