Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2103.12803
Cited By
v1
v2
v3
v4 (latest)
JFB: Jacobian-Free Backpropagation for Implicit Networks
AAAI Conference on Artificial Intelligence (AAAI), 2021
23 March 2021
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"JFB: Jacobian-Free Backpropagation for Implicit Networks"
43 / 43 papers shown
Title
Equivariant Deep Equilibrium Models for Imaging Inverse Problems
Alexander Mehta
Ruangrawee Kitichotkul
Vivek K Goyal
Julián Tachella
119
0
0
24 Nov 2025
Gradient flow for deep equilibrium single-index models
Sanjit Dandapanthula
Aaditya Ramdas
144
0
0
21 Nov 2025
Bilevel Learning via Inexact Stochastic Gradient Descent
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
93
0
0
10 Nov 2025
Implicit Models: Expressive Power Scales with Test-Time Compute
Jialin Liu
Lisang Ding
Stanley Osher
W. Yin
136
1
0
04 Oct 2025
Learning Regularization Functionals for Inverse Problems: A Comparative Study
J. Hertrich
Matthias Joachim Ehrhardt
Alexander Denker
Stanislas Ducotterd
Zhenghan Fang
...
German Shâma Wache
Martin Zach
Yasi Zhang
Matthias Joachim Ehrhardt
Sebastian Neumayer
124
3
0
02 Oct 2025
End-to-End Training of High-Dimensional Optimal Control with Implicit Hamiltonians via Jacobian-Free Backpropagation
Eric Gelphman
Deepanshu Verma
Nicole Tianjiao Yang
Stanley Osher
Samy Wu Fung
155
0
0
01 Oct 2025
Reversible Deep Equilibrium Models
Sam McCallum
Kamran Arora
James Foster
195
2
0
16 Sep 2025
DEQuify your force field: More efficient simulations using deep equilibrium models
Andreas Burger
Luca Thiede
Alán Aspuru-Guzik
Nandita Vijaykumar
94
0
0
10 Sep 2025
Minimizing Surrogate Losses for Decision-Focused Learning using Differentiable Optimization
Jayanta Mandi
Ali İrfan Mahmutoğulları
Senne Berden
Tias Guns
104
0
0
15 Aug 2025
Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent
Christian Daniele
Silvia Villa
Samuel Vaiter
Luca Calatroni
179
4
0
15 Jul 2025
You Only Look One Step: Accelerating Backpropagation in Diffusion Sampling with Gradient Shortcuts
Hongkun Dou
Zeyu Li
Xingyu Jiang
Haoyang Li
Lijun Yang
Wen Yao
Yue Deng
DiffM
488
0
0
12 May 2025
Fixed-Point RNNs: Interpolating from Diagonal to Dense
Sajad Movahedi
Felix Sarnthein
Nicola Muca Cirone
Antonio Orvieto
414
5
0
13 Mar 2025
PRDP: Progressively Refined Differentiable Physics
International Conference on Learning Representations (ICLR), 2025
Kanishk Bhatia
Felix Koehler
Nils Thuerey
AI4CE
308
1
0
26 Feb 2025
A Generalization Bound for a Family of Implicit Networks
Samy Wu Fung
Benjamin Berkels
413
3
0
28 Jan 2025
Accelerating AI Performance using Anderson Extrapolation on GPUs
Saleem Al Dajani
David Keyes
146
0
0
25 Oct 2024
Differentiation Through Black-Box Quadratic Programming Solvers
Connor W. Magoon
Fengyu Yang
Noam Aigerman
Shahar Z. Kovalsky
344
3
0
08 Oct 2024
On Logical Extrapolation for Mazes with Recurrent and Implicit Networks
Brandon Knutson
Amandin Chyba Rabeendran
Michael Ivanitskiy
Jordan Pettyjohn
Cecilia G. Diniz Behn
Samy Wu Fung
Daniel McKenzie
LRM
405
5
0
03 Oct 2024
Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
Jinghan Li
Zhicheng Sun
Fei Li
626
2
0
02 Oct 2024
The Extrapolation Power of Implicit Models
Juliette Decugis
Alicia Y. Tsai
Max Emerling
Ashwin Ganesh
L. Ghaoui
153
0
0
19 Jul 2024
Training Implicit Networks for Image Deblurring using Jacobian-Free Backpropagation
Linghai Liu
Shuaicheng Tong
Lisa Zhao
192
1
0
03 Feb 2024
IDKM: Memory Efficient Neural Network Quantization via Implicit, Differentiable k-Means
Sean Jaffe
Ambuj K. Singh
Francesco Bullo
MQ
199
0
0
12 Dec 2023
Spike Accumulation Forwarding for Effective Training of Spiking Neural Networks
Ryuji Saiin
Tomoya Shirakawa
Sota Yoshihara
Yoshihide Sawada
Hiroyuki Kusumoto
391
3
0
04 Oct 2023
Deep Equilibrium Object Detection
IEEE International Conference on Computer Vision (ICCV), 2023
Shuai Wang
Yao Teng
Limin Wang
274
13
0
18 Aug 2023
Test like you Train in Implicit Deep Learning
Zaccharie Ramzi
Pierre Ablin
Gabriel Peyré
Thomas Moreau
191
3
0
24 May 2023
Model-corrected learned primal-dual models for fast limited-view photoacoustic tomography
A. Hauptmann
Jenni Poimala
MedIm
139
7
0
04 Apr 2023
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints
International Conference on Machine Learning (ICML), 2023
Jiayang Li
Jiahao Yu
Boyi Liu
Zhaoran Wang
Y. Nie
266
7
0
20 Feb 2023
Differentiable Outlier Detection Enable Robust Deep Multimodal Analysis
Zhu Wang
Sourav Medya
Sathya Ravi
VLM
223
1
0
11 Feb 2023
Unlocking Slot Attention by Changing Optimal Transport Costs
International Conference on Machine Learning (ICML), 2023
Yan Zhang
David W. Zhang
Damien Scieur
Gertjan J. Burghouts
Cees G. M. Snoek
OCL
340
16
0
30 Jan 2023
Towards Vision Transformer Unrolling Fixed-Point Algorithm: a Case Study on Image Restoration
Peng Qiao
Sidun Liu
Tao Sun
Ke Yang
Y. Dou
ViT
175
2
0
29 Jan 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
IEEE Transactions on Computational Imaging (TCI), 2022
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
329
39
0
22 Nov 2022
Online Training Through Time for Spiking Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Mingqing Xiao
Qingyan Meng
Zongpeng Zhang
D.K. He
Zhouchen Lin
259
89
0
09 Oct 2022
Self-Supervised Deep Equilibrium Models for Inverse Problems with Theoretical Guarantees
Weijie Gan
Chunwei Ying
Parna Eshraghi
Tongyao Wang
C. Eldeniz
Yuyang Hu
Jiaming Liu
Yasheng Chen
Hongyu An
Ulugbek S. Kamilov
148
4
0
07 Oct 2022
Alternating Differentiation for Optimization Layers
International Conference on Learning Representations (ICLR), 2022
Haixiang Sun
Ye Shi
Jingya Wang
H. Tuan
H. Vincent Poor
Dacheng Tao
ODL
276
22
0
03 Oct 2022
Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training
International Conference on Machine Learning (ICML), 2022
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
242
6
0
16 Jun 2022
Learned reconstruction methods with convergence guarantees
IEEE Signal Processing Magazine (IEEE Signal Process. Mag.), 2022
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
373
64
0
11 Jun 2022
Online Deep Equilibrium Learning for Regularization by Denoising
Neural Information Processing Systems (NeurIPS), 2022
Jiaming Liu
Xiaojian Xu
Weijie Gan
Shirin Shoushtari
Ulugbek S. Kamilov
227
29
0
25 May 2022
Explainable AI via Learning to Optimize
Scientific Reports (Sci Rep), 2022
Howard Heaton
Samy Wu Fung
238
20
0
29 Apr 2022
Representation Recycling for Streaming Video Analysis
Can Ufuk Ertenli
R. G. Cinbis
Emre Akbas
237
1
0
28 Apr 2022
Learning Deep Implicit Fourier Neural Operators (IFNOs) with Applications to Heterogeneous Material Modeling
Computer Methods in Applied Mechanics and Engineering (CMAME), 2022
Huaiqian You
Quinn Zhang
Colton J. Ross
Chung-Hao Lee
Yue Yu
AI4CE
235
128
0
15 Mar 2022
Continuous Deep Equilibrium Models: Training Neural ODEs faster by integrating them to Infinity
IEEE Conference on High Performance Extreme Computing (HPEC), 2022
Avik Pal
Alan Edelman
Chris Rackauckas
186
8
0
28 Jan 2022
AdaViT: Adaptive Tokens for Efficient Vision Transformer
Hongxu Yin
Arash Vahdat
J. Álvarez
Arun Mallya
Jan Kautz
Pavlo Molchanov
ViT
566
438
0
14 Dec 2021
Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation
Yan Zhang
David W. Zhang
Damien Scieur
Gertjan J. Burghouts
Cees G. M. Snoek
BDL
187
22
0
23 Nov 2021
Operator Splitting for Learning to Predict Equilibria in Convex Games
Daniel McKenzie
Howard Heaton
Qiuwei Li
Samy Wu Fung
Stanley Osher
Wotao Yin
278
0
0
02 Jun 2021
1