ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14030
  4. Cited By
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
v1v2 (latest)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

IEEE International Conference on Computer Vision (ICCV), 2021
25 March 2021
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
    ViT
ArXiv (abs)PDFHTMLHuggingFace (5 upvotes)Github (14835★)

Papers citing "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"

50 / 8,525 papers shown
Transformed CNNs: recasting pre-trained convolutional layers with
  self-attention
Transformed CNNs: recasting pre-trained convolutional layers with self-attention
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Ari S. Morcos
ViT
106
7
0
10 Jun 2021
CAT: Cross Attention in Vision Transformer
CAT: Cross Attention in Vision TransformerIEEE International Conference on Multimedia and Expo (ICME), 2021
Hezheng Lin
Xingyi Cheng
Xiangyu Wu
Fan Yang
Dong Shen
Zhongyuan Wang
Qing Song
Wei Yuan
ViT
187
260
0
10 Jun 2021
MST: Masked Self-Supervised Transformer for Visual Representation
MST: Masked Self-Supervised Transformer for Visual RepresentationNeural Information Processing Systems (NeurIPS), 2021
Zhaowen Li
Zhiyang Chen
Fan Yang
Wei Li
Yousong Zhu
...
Rui Deng
Liwei Wu
Rui Zhao
Ming Tang
Jinqiao Wang
ViT
239
178
0
10 Jun 2021
Knowledge distillation: A good teacher is patient and consistent
Knowledge distillation: A good teacher is patient and consistentComputer Vision and Pattern Recognition (CVPR), 2021
Lucas Beyer
Xiaohua Zhai
Amelie Royer
L. Markeeva
Rohan Anil
Alexander Kolesnikov
VLM
392
363
0
09 Jun 2021
Do Transformers Really Perform Bad for Graph Representation?
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
559
521
0
09 Jun 2021
CoAtNet: Marrying Convolution and Attention for All Data Sizes
CoAtNet: Marrying Convolution and Attention for All Data SizesNeural Information Processing Systems (NeurIPS), 2021
Zihang Dai
Hanxiao Liu
Quoc V. Le
Mingxing Tan
ViT
584
1,478
0
09 Jun 2021
TED-net: Convolution-free T2T Vision Transformer-based Encoder-decoder
  Dilation network for Low-dose CT Denoising
TED-net: Convolution-free T2T Vision Transformer-based Encoder-decoder Dilation network for Low-dose CT Denoising
Dayang Wang
Zhan Wu
Hengyong Yu
ViTMedIm
211
66
0
08 Jun 2021
A Survey of Transformers
A Survey of TransformersAI Open (AO), 2021
Tianyang Lin
Yuxin Wang
Xiangyang Liu
Xipeng Qiu
ViT
456
1,396
0
08 Jun 2021
On the Connection between Local Attention and Dynamic Depth-wise
  Convolution
On the Connection between Local Attention and Dynamic Depth-wise ConvolutionInternational Conference on Learning Representations (ICLR), 2021
Qi Han
Zejia Fan
Jingdong Sun
Lei-huan Sun
Ming-Ming Cheng
Jiaying Liu
Jingdong Wang
ViT
366
133
0
08 Jun 2021
On Improving Adversarial Transferability of Vision Transformers
On Improving Adversarial Transferability of Vision TransformersInternational Conference on Learning Representations (ICLR), 2021
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Fahad Shahbaz Khan
Fatih Porikli
ViT
262
107
0
08 Jun 2021
Fully Transformer Networks for Semantic Image Segmentation
Fully Transformer Networks for Semantic Image Segmentation
Sitong Wu
Tianyi Wu
Fangjian Lin
Sheng Tian
Guodong Guo
ViT
289
47
0
08 Jun 2021
Generative Flows with Invertible Attentions
Generative Flows with Invertible AttentionsComputer Vision and Pattern Recognition (CVPR), 2021
R. Sukthanker
Zhiwu Huang
Suryansh Kumar
Radu Timofte
Luc Van Gool
354
16
0
07 Jun 2021
Efficient Training of Visual Transformers with Small Datasets
Efficient Training of Visual Transformers with Small DatasetsNeural Information Processing Systems (NeurIPS), 2021
Yahui Liu
E. Sangineto
Wei Bi
Andrii Zadaianchuk
Bruno Lepri
Marco De Nadai
ViT
194
215
0
07 Jun 2021
Refiner: Refining Self-attention for Vision Transformers
Refiner: Refining Self-attention for Vision Transformers
Daquan Zhou
Yujun Shi
Bingyi Kang
Weihao Yu
Zihang Jiang
Yuan Li
Xiaojie Jin
Qibin Hou
Jiashi Feng
ViT
232
68
0
07 Jun 2021
Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer
Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer
Zilong Huang
Youcheng Ben
Guozhong Luo
Pei Cheng
Gang Yu
Bin-Bin Fu
ViT
276
208
0
07 Jun 2021
Self-supervised Depth Estimation Leveraging Global Perception and
  Geometric Smoothness Using On-board Videos
Self-supervised Depth Estimation Leveraging Global Perception and Geometric Smoothness Using On-board Videos
Shaocheng Jia
Xin Pei
W. Yao
S. Wong
3DPCMDE
158
22
0
07 Jun 2021
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive BiasNeural Information Processing Systems (NeurIPS), 2021
Yufei Xu
Qiming Zhang
Jing Zhang
Dacheng Tao
ViT
451
396
0
07 Jun 2021
Vision Transformers with Hierarchical Attention
Vision Transformers with Hierarchical AttentionMachine Intelligence Research (MIR), 2021
Yun-Hai Liu
Yu-Huan Wu
Guolei Sun
Le Zhang
Ajad Chhatkuli
Luc Van Gool
ViT
184
75
0
06 Jun 2021
Large-scale Unsupervised Semantic Segmentation
Large-scale Unsupervised Semantic SegmentationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Shangqi Gao
Zhong-Yu Li
Ming-Hsuan Yang
Mingg-Ming Cheng
Junwei Han
Juil Sock
UQCV
375
118
0
06 Jun 2021
Rethinking Training from Scratch for Object Detection
Rethinking Training from Scratch for Object Detection
Yang Li
Hong Zhang
Yu Zhang
VLMOnRLObjD
152
5
0
06 Jun 2021
Uformer: A General U-Shaped Transformer for Image Restoration
Uformer: A General U-Shaped Transformer for Image RestorationComputer Vision and Pattern Recognition (CVPR), 2021
Zhendong Wang
Xiaodong Cun
Jianmin Bao
Wengang Zhou
Jianzhuang Liu
Houqiang Li
ViT
512
1,912
0
06 Jun 2021
Patch Slimming for Efficient Vision Transformers
Patch Slimming for Efficient Vision TransformersComputer Vision and Pattern Recognition (CVPR), 2021
Yehui Tang
Kai Han
Yunhe Wang
Chang Xu
Jianyuan Guo
Chao Xu
Dacheng Tao
ViT
333
195
0
05 Jun 2021
Motion Planning Transformers: A Motion Planning Framework for Mobile
  Robots
Motion Planning Transformers: A Motion Planning Framework for Mobile Robots
Jacob J. Johnson
Uday S. Kalra
Ankit Bhatia
Linjun Li
A. H. Qureshi
Michael C. Yip
163
19
0
05 Jun 2021
Signal Transformer: Complex-valued Attention and Meta-Learning for
  Signal Recognition
Signal Transformer: Complex-valued Attention and Meta-Learning for Signal RecognitionIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Yihong Dong
Ying Peng
Muqiao Yang
Songtao Lu
Qingjiang Shi
421
12
0
05 Jun 2021
ZeroWaste Dataset: Towards Deformable Object Segmentation in Cluttered
  Scenes
ZeroWaste Dataset: Towards Deformable Object Segmentation in Cluttered ScenesComputer Vision and Pattern Recognition (CVPR), 2021
D. Bashkirova
M. Abdelfattah
Ziliang Zhu
James Akl
Fadi M. Alladkani
Ping Hu
Vitaly Ablavsky
B. Çalli
Sarah Adel Bargal
Kate Saenko
343
73
0
04 Jun 2021
RegionViT: Regional-to-Local Attention for Vision Transformers
RegionViT: Regional-to-Local Attention for Vision TransformersInternational Conference on Learning Representations (ICLR), 2021
Chun-Fu Chen
Yikang Shen
Quanfu Fan
ViT
486
234
0
04 Jun 2021
Associating Objects with Transformers for Video Object Segmentation
Associating Objects with Transformers for Video Object SegmentationNeural Information Processing Systems (NeurIPS), 2021
Zongxin Yang
Yunchao Wei
Yi Yang
423
349
0
04 Jun 2021
CATs: Cost Aggregation Transformers for Visual Correspondence
CATs: Cost Aggregation Transformers for Visual CorrespondenceNeural Information Processing Systems (NeurIPS), 2021
Seokju Cho
Sunghwan Hong
Sangryul Jeon
Yunsung Lee
Kwanghoon Sohn
Seungryong Kim
ViT
342
117
0
04 Jun 2021
The Image Local Autoregressive Transformer
The Image Local Autoregressive TransformerNeural Information Processing Systems (NeurIPS), 2021
Chenjie Cao
Yue Hong
Xiang Li
Chengrong Wang
C. Xu
Xiangyang Xue
Yanwei Fu
180
15
0
04 Jun 2021
SOLQ: Segmenting Objects by Learning Queries
SOLQ: Segmenting Objects by Learning QueriesNeural Information Processing Systems (NeurIPS), 2021
Bin Dong
Fangao Zeng
Tiancai Wang
Xinming Zhang
Yichen Wei
ISeg
294
134
0
04 Jun 2021
Glance-and-Gaze Vision Transformer
Glance-and-Gaze Vision TransformerNeural Information Processing Systems (NeurIPS), 2021
Qihang Yu
Yingda Xia
Yutong Bai
Yongyi Lu
Alan Yuille
Wei Shen
ViT
165
83
0
04 Jun 2021
X-volution: On the unification of convolution and self-attention
X-volution: On the unification of convolution and self-attention
Xuanhong Chen
Hang Wang
Bingbing Ni
ViT
154
27
0
04 Jun 2021
DynamicViT: Efficient Vision Transformers with Dynamic Token
  Sparsification
DynamicViT: Efficient Vision Transformers with Dynamic Token SparsificationNeural Information Processing Systems (NeurIPS), 2021
Yongming Rao
Wenliang Zhao
Benlin Liu
Jiwen Lu
Jie Zhou
Cho-Jui Hsieh
ViT
526
932
0
03 Jun 2021
Less is More: Sparse Sampling for Dense Reaction Predictions
Less is More: Sparse Sampling for Dense Reaction Predictions
Kezhou Lin
Xiaohan Wang
Zhedong Zheng
Linchao Zhu
Yi Yang
149
4
0
03 Jun 2021
When Vision Transformers Outperform ResNets without Pre-training or
  Strong Data Augmentations
When Vision Transformers Outperform ResNets without Pre-training or Strong Data AugmentationsInternational Conference on Learning Representations (ICLR), 2021
Xiangning Chen
Cho-Jui Hsieh
Boqing Gong
ViT
372
375
0
03 Jun 2021
Container: Context Aggregation Network
Container: Context Aggregation NetworkNeural Information Processing Systems (NeurIPS), 2021
Peng Gao
Jiasen Lu
Jiaming Song
Roozbeh Mottaghi
Aniruddha Kembhavi
ViT
288
81
0
02 Jun 2021
You Only Look at One Sequence: Rethinking Transformer in Vision through
  Object Detection
You Only Look at One Sequence: Rethinking Transformer in Vision through Object DetectionNeural Information Processing Systems (NeurIPS), 2021
Yuxin Fang
Bencheng Liao
Xinggang Wang
Jiemin Fang
Jiyang Qi
Rui Wu
Jianwei Niu
Wenyu Liu
ViT
270
386
0
01 Jun 2021
Exploring the Diversity and Invariance in Yourself for Visual
  Pre-Training Task
Exploring the Diversity and Invariance in Yourself for Visual Pre-Training TaskPattern Recognition (Pattern Recogn.), 2021
Longhui Wei
Lingxi Xie
Wen-gang Zhou
Houqiang Li
Qi Tian
SSL
244
4
0
01 Jun 2021
SegFormer: Simple and Efficient Design for Semantic Segmentation with
  Transformers
SegFormer: Simple and Efficient Design for Semantic Segmentation with TransformersNeural Information Processing Systems (NeurIPS), 2021
Enze Xie
Wenhai Wang
Zhiding Yu
Anima Anandkumar
J. Álvarez
Ping Luo
ViT
1.2K
7,116
0
31 May 2021
MSG-Transformer: Exchanging Local Spatial Information by Manipulating
  Messenger Tokens
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger TokensComputer Vision and Pattern Recognition (CVPR), 2021
Jiemin Fang
Lingxi Xie
Xinggang Wang
Xiaopeng Zhang
Wenyu Liu
Qi Tian
ViT
231
84
0
31 May 2021
Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model
Analogous to Evolutionary Algorithm: Designing a Unified Sequence ModelNeural Information Processing Systems (NeurIPS), 2021
Jiangning Zhang
Chao Xu
Jian Li
Wenzhou Chen
Yabiao Wang
Ying Tai
Shuo Chen
Chengjie Wang
Feiyue Huang
Yong Liu
288
26
0
31 May 2021
SDNet: mutil-branch for single image deraining using swin
SDNet: mutil-branch for single image deraining using swin
Fuxiang Tan
Yuting Kong
Yingying Fan
Feng Liu
Daxin Zhou
Hao Zhang
Long Chen
Liang Gao
Yurong Qian
ViT
165
18
0
31 May 2021
Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient
  Image Recognition
Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image RecognitionNeural Information Processing Systems (NeurIPS), 2021
Yulin Wang
Rui Huang
Qing Xiao
Zeyi Huang
Gao Huang
ViT
285
234
0
31 May 2021
Predicting Driver Intention Using Deep Neural Network
Predicting Driver Intention Using Deep Neural Network
Mahdi Bonyani
Mina Rahmanian
Simindokht Jahangard
117
3
0
31 May 2021
Dual-stream Network for Visual Recognition
Dual-stream Network for Visual RecognitionNeural Information Processing Systems (NeurIPS), 2021
Mingyuan Mao
Renrui Zhang
Honghui Zheng
Shiyang Feng
Teli Ma
Yan Peng
Errui Ding
Baochang Zhang
Shumin Han
ViT
282
78
0
31 May 2021
StyTr$^2$: Image Style Transfer with Transformers
StyTr2^22: Image Style Transfer with TransformersComputer Vision and Pattern Recognition (CVPR), 2021
Yingying Deng
Fan Tang
Weiming Dong
Chongyang Ma
Xingjia Pan
Lei Wang
Changsheng Xu
ViT
395
369
0
30 May 2021
TransMatcher: Deep Image Matching Through Transformers for Generalizable
  Person Re-identification
TransMatcher: Deep Image Matching Through Transformers for Generalizable Person Re-identificationNeural Information Processing Systems (NeurIPS), 2021
Tianran Ouyang
Ling Shao
ViT
260
72
0
30 May 2021
Gaze Estimation using Transformer
Gaze Estimation using TransformerInternational Conference on Pattern Recognition (ICPR), 2021
Yihua Cheng
Feng Lu
ViT
226
136
0
30 May 2021
Deep Learning on Monocular Object Pose Detection and Tracking: A
  Comprehensive Overview
Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive OverviewACM Computing Surveys (CSUR), 2021
Zhaoxin Fan
Yazhi Zhu
Yulin He
Qi Sun
Hongyan Liu
Jun He
370
101
0
29 May 2021
Less is More: Pay Less Attention in Vision Transformers
Less is More: Pay Less Attention in Vision TransformersAAAI Conference on Artificial Intelligence (AAAI), 2021
Zizheng Pan
Bohan Zhuang
Haoyu He
Jing Liu
Jianfei Cai
ViT
349
102
0
29 May 2021
Previous
123...168169170171
Next
Page 169 of 171
Pageof 171