ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02666
  4. Cited By
Counterfactual Explanations Can Be Manipulated
v1v2 (latest)

Counterfactual Explanations Can Be Manipulated

4 June 2021
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
ArXiv (abs)PDFHTML

Papers citing "Counterfactual Explanations Can Be Manipulated"

50 / 89 papers shown
Title
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
131
0
0
05 May 2025
Explanations as Bias Detectors: A Critical Study of Local Post-hoc XAI Methods for Fairness Exploration
Explanations as Bias Detectors: A Critical Study of Local Post-hoc XAI Methods for Fairness Exploration
Vasiliki Papanikou
Danae Pla Karidi
E. Pitoura
Emmanouil Panagiotou
Eirini Ntoutsi
158
0
0
01 May 2025
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CMLLRM
144
0
0
31 Mar 2025
Can LLMs Explain Themselves Counterfactually?
Can LLMs Explain Themselves Counterfactually?
Zahra Dehghanighobadi
Asja Fischer
Muhammad Bilal Zafar
LRM
88
0
0
25 Feb 2025
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models
Thomas Fel
Ekdeep Singh Lubana
Jacob S. Prince
M. Kowal
Victor Boutin
Isabel Papadimitriou
Binxu Wang
Martin Wattenberg
Demba Ba
Talia Konkle
76
8
0
18 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
205
0
0
06 Feb 2025
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
113
1
0
10 Jan 2025
Utilizing Human Behavior Modeling to Manipulate Explanations in
  AI-Assisted Decision Making: The Good, the Bad, and the Scary
Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary
Zhuoyan Li
Ming Yin
67
3
0
02 Nov 2024
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaMLFAtt
227
1
0
29 Oct 2024
S-CFE: Simple Counterfactual Explanations
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
141
1
0
21 Oct 2024
Time Can Invalidate Algorithmic Recourse
Time Can Invalidate Algorithmic Recourse
Giovanni De Toni
Stefano Teso
Bruno Lepri
Andrea Passerini
102
1
0
10 Oct 2024
Understanding with toy surrogate models in machine learning
Understanding with toy surrogate models in machine learning
Andrés Páez
SyDa
101
0
0
08 Oct 2024
Perfect Counterfactuals in Imperfect Worlds: Modelling Noisy
  Implementation of Actions in Sequential Algorithmic Recourse
Perfect Counterfactuals in Imperfect Worlds: Modelling Noisy Implementation of Actions in Sequential Algorithmic Recourse
Yueqing Xuan
Kacper Sokol
Mark Sanderson
Jeffrey Chan
72
1
0
03 Oct 2024
Learning-Augmented Robust Algorithmic Recourse
Learning-Augmented Robust Algorithmic Recourse
Kshitij Kayastha
Vasilis Gkatzelis
Shahin Jabbari
84
0
0
02 Oct 2024
Review of Explainable Graph-Based Recommender Systems
Review of Explainable Graph-Based Recommender Systems
Thanet Markchom
Huizhi Liang
James Ferryman
XAI
117
0
0
31 Jul 2024
CE-QArg: Counterfactual Explanations for Quantitative Bipolar
  Argumentation Frameworks (Technical Report)
CE-QArg: Counterfactual Explanations for Quantitative Bipolar Argumentation Frameworks (Technical Report)
Xiang Yin
Nico Potyka
Francesca Toni
59
1
0
11 Jul 2024
Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations
Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations
Luca Marzari
Francesco Leofante
Ferdinando Cicalese
Alessandro Farinelli
OOD
84
3
0
10 Jul 2024
Understanding Visual Feature Reliance through the Lens of Complexity
Understanding Visual Feature Reliance through the Lens of Complexity
Thomas Fel
Louis Bethune
Andrew Kyle Lampinen
Thomas Serre
Katherine Hermann
FAttCoGe
92
9
0
08 Jul 2024
Mapping the Potential of Explainable AI for Fairness Along the AI
  Lifecycle
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
76
4
0
29 Apr 2024
Why You Should Not Trust Interpretations in Machine Learning:
  Adversarial Attacks on Partial Dependence Plots
Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
Xi Xin
Giles Hooker
Fei Huang
AAML
71
7
0
29 Apr 2024
SIDEs: Separating Idealization from Deceptive Explanations in xAI
SIDEs: Separating Idealization from Deceptive Explanations in xAI
Emily Sullivan
75
2
0
25 Apr 2024
Interval Abstractions for Robust Counterfactual Explanations
Interval Abstractions for Robust Counterfactual Explanations
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
60
1
0
21 Apr 2024
Forward Learning for Gradient-based Black-box Saliency Map Generation
Forward Learning for Gradient-based Black-box Saliency Map Generation
Zeliang Zhang
Mingqian Feng
Jinyang Jiang
Rongyi Zhu
Yijie Peng
Chenliang Xu
FAtt
103
2
0
22 Mar 2024
A Two-Stage Algorithm for Cost-Efficient Multi-instance Counterfactual
  Explanations
A Two-Stage Algorithm for Cost-Efficient Multi-instance Counterfactual Explanations
André Artelt
Andreas Gregoriades
61
1
0
02 Mar 2024
Axe the X in XAI: A Plea for Understandable AI
Axe the X in XAI: A Plea for Understandable AI
Andrés Páez
91
0
0
01 Mar 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
286
22
0
28 Feb 2024
Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation
Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation
Duy Nguyen
Bao Nguyen
Viet Anh Nguyen
50
0
0
23 Feb 2024
The Effect of Data Poisoning on Counterfactual Explanations
The Effect of Data Poisoning on Counterfactual Explanations
André Artelt
Shubham Sharma
Freddy Lecue
Barbara Hammer
129
1
0
13 Feb 2024
Robust Counterfactual Explanations in Machine Learning: A Survey
Robust Counterfactual Explanations in Machine Learning: A Survey
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
OffRLCML
76
13
0
02 Feb 2024
SoK: Taming the Triangle -- On the Interplays between Fairness,
  Interpretability and Privacy in Machine Learning
SoK: Taming the Triangle -- On the Interplays between Fairness, Interpretability and Privacy in Machine Learning
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
69
5
0
22 Dec 2023
Fast Diffusion-Based Counterfactuals for Shortcut Removal and Generation
Fast Diffusion-Based Counterfactuals for Shortcut Removal and Generation
Nina Weng
Paraskevas Pegios
Eike Petersen
Aasa Feragen
Siavash Bigdeli
MedImCML
55
13
0
21 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CMLAI4CE
158
3
0
19 Dec 2023
Faithful Model Explanations through Energy-Constrained Conformal
  Counterfactuals
Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals
Patrick Altmeyer
Mojtaba Farmanbar
A. V. Deursen
Cynthia C. S. Liem
64
3
0
17 Dec 2023
Promoting Counterfactual Robustness through Diversity
Promoting Counterfactual Robustness through Diversity
Francesco Leofante
Nico Potyka
37
8
0
11 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
162
2
0
07 Dec 2023
Privacy-Preserving Algorithmic Recourse
Privacy-Preserving Algorithmic Recourse
Sikha Pentyala
Shubham Sharma
Sanjay Kariyappa
Freddy Lecue
Daniele Magazzeni
74
5
0
23 Nov 2023
A Critical Survey on Fairness Benefits of Explainable AI
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
117
13
0
15 Oct 2023
Can AI Mitigate Human Perceptual Biases? A Pilot Study
Can AI Mitigate Human Perceptual Biases? A Pilot Study
Ross Geuy
Nate Rising
Tiancheng Shi
Meng-Ying Ling
Jian Chen
56
0
0
10 Oct 2023
Latent Diffusion Counterfactual Explanations
Latent Diffusion Counterfactual Explanations
Karim Farid
Simon Schrodi
Max Argus
Thomas Brox
DiffM
99
14
0
10 Oct 2023
On the Trade-offs between Adversarial Robustness and Actionable
  Explanations
On the Trade-offs between Adversarial Robustness and Actionable Explanations
Satyapriya Krishna
Chirag Agarwal
Himabindu Lakkaraju
AAML
84
0
0
28 Sep 2023
T-COL: Generating Counterfactual Explanations for General User
  Preferences on Variable Machine Learning Systems
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
Yiming Li
Daling Wang
Wenfang Wu
Shi Feng
Yifei Zhang
CML
87
1
0
28 Sep 2023
Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
  Perturbations
Flexible and Robust Counterfactual Explanations with Minimal Satisfiable Perturbations
Yongjie Wang
Hangwei Qian
Yongjie Liu
Wei Guo
Chunyan Miao
67
4
0
09 Sep 2023
Counterfactual Explanations via Locally-guided Sequential Algorithmic
  Recourse
Counterfactual Explanations via Locally-guided Sequential Algorithmic Recourse
Edward A. Small
Jeffrey N Clark
Christopher J. McWilliams
Kacper Sokol
Jeffrey Chan
Flora D. Salim
Raúl Santos-Rodríguez
87
1
0
08 Sep 2023
Explaining Black-Box Models through Counterfactuals
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CMLLRM
70
2
0
14 Aug 2023
CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning
  Capabilities of Natural Language Models
CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning Capabilities of Natural Language Models
Xingbo Wang
Renfei Huang
Zhihua Jin
Tianqing Fang
Huamin Qu
VLMReLMLRM
109
2
0
23 Jul 2023
Stability Guarantees for Feature Attributions with Multiplicative
  Smoothing
Stability Guarantees for Feature Attributions with Multiplicative Smoothing
Anton Xue
Rajeev Alur
Eric Wong
117
6
0
12 Jul 2023
Simple Steps to Success: Axiomatics of Distance-Based Algorithmic
  Recourse
Simple Steps to Success: Axiomatics of Distance-Based Algorithmic Recourse
Jenny Hamer
Jake Valladares
Vignesh Viswanathan
Yair Zick
54
2
0
27 Jun 2023
Manipulation Risks in Explainable AI: The Implications of the
  Disagreement Problem
Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem
S. Goethals
David Martens
Theodoros Evgeniou
88
4
0
24 Jun 2023
Hardness of Deceptive Certificate Selection
Hardness of Deceptive Certificate Selection
Stephan Wäldchen
AAML
29
1
0
07 Jun 2023
Adversarial attacks and defenses in explainable artificial intelligence:
  A survey
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
128
69
0
06 Jun 2023
12
Next