ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02666
  4. Cited By
Counterfactual Explanations Can Be Manipulated
v1v2 (latest)

Counterfactual Explanations Can Be Manipulated

4 June 2021
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
ArXiv (abs)PDFHTML

Papers citing "Counterfactual Explanations Can Be Manipulated"

39 / 89 papers shown
Title
Faithfulness Tests for Natural Language Explanations
Faithfulness Tests for Natural Language Explanations
Pepa Atanasova
Oana-Maria Camburu
Christina Lioma
Thomas Lukasiewicz
J. Simonsen
Isabelle Augenstein
FAtt
120
67
0
29 May 2023
Counterfactuals of Counterfactuals: a back-translation-inspired approach
  to analyse counterfactual editors
Counterfactuals of Counterfactuals: a back-translation-inspired approach to analyse counterfactual editors
Giorgos Filandrianos
Edmund Dervakos
Orfeas Menis Mastromichalakis
Chrysoula Zerva
Giorgos Stamou
AAML
90
5
0
26 May 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual
  Explanations
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
95
19
0
26 May 2023
Sequential Integrated Gradients: a simple but effective method for
  explaining language models
Sequential Integrated Gradients: a simple but effective method for explaining language models
Joseph Enguehard
79
43
0
25 May 2023
Achieving Diversity in Counterfactual Explanations: a Review and
  Discussion
Achieving Diversity in Counterfactual Explanations: a Review and Discussion
Thibault Laugel
Adulam Jeyasothy
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
62
13
0
10 May 2023
Algorithmic Recourse with Missing Values
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
60
2
0
28 Apr 2023
Impact Of Explainable AI On Cognitive Load: Insights From An Empirical
  Study
Impact Of Explainable AI On Cognitive Load: Insights From An Empirical Study
L. Herm
73
22
0
18 Apr 2023
Iterative Partial Fulfillment of Counterfactual Explanations: Benefits
  and Risks
Iterative Partial Fulfillment of Counterfactual Explanations: Benefits and Risks
Yilun Zhou
62
0
0
17 Mar 2023
Explaining Groups of Instances Counterfactually for XAI: A Use Case,
  Algorithm and User Study for Group-Counterfactuals
Explaining Groups of Instances Counterfactually for XAI: A Use Case, Algorithm and User Study for Group-Counterfactuals
Greta Warren
Markt. Keane
Christophe Guéret
Eoin Delaney
56
13
0
16 Mar 2023
"How to make them stay?" -- Diverse Counterfactual Explanations of
  Employee Attrition
"How to make them stay?" -- Diverse Counterfactual Explanations of Employee Attrition
André Artelt
Andreas Gregoriades
86
5
0
08 Mar 2023
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
Zijie J. Wang
J. W. Vaughan
R. Caruana
Duen Horng Chau
HAI
94
22
0
27 Feb 2023
Robustness Implies Fairness in Causal Algorithmic Recourse
Robustness Implies Fairness in Causal Algorithmic Recourse
A. Ehyaei
Amir-Hossein Karimi
Bernhard Schölkopf
S. Maghsudi
FaML
72
12
0
07 Feb 2023
Finding Regions of Counterfactual Explanations via Robust Optimization
Finding Regions of Counterfactual Explanations via Robust Optimization
Donato Maragno
Jannis Kurtz
Tabea E. Rober
Rob Goedhart
cS. .Ilker Birbil
D. Hertog
148
22
0
26 Jan 2023
Don't Lie to Me: Avoiding Malicious Explanations with STEALTH
Don't Lie to Me: Avoiding Malicious Explanations with STEALTH
Lauren Alvarez
Tim Menzies
83
4
0
25 Jan 2023
Bayesian Hierarchical Models for Counterfactual Estimation
Bayesian Hierarchical Models for Counterfactual Estimation
Natraj Raman
Daniele Magazzeni
Sameena Shah
56
5
0
21 Jan 2023
"Explain it in the Same Way!" -- Model-Agnostic Group Fairness of
  Counterfactual Explanations
"Explain it in the Same Way!" -- Model-Agnostic Group Fairness of Counterfactual Explanations
André Artelt
Barbara Hammer
FaML
84
8
0
27 Nov 2022
On the Privacy Risks of Algorithmic Recourse
On the Privacy Risks of Algorithmic Recourse
Martin Pawelczyk
Himabindu Lakkaraju
Seth Neel
86
31
0
10 Nov 2022
Beyond Model Interpretability: On the Faithfulness and Adversarial
  Robustness of Contrastive Textual Explanations
Beyond Model Interpretability: On the Faithfulness and Adversarial Robustness of Contrastive Textual Explanations
Julia El Zini
M. Awad
AAML
62
2
0
17 Oct 2022
FASTER-CE: Fast, Sparse, Transparent, and Robust Counterfactual
  Explanations
FASTER-CE: Fast, Sparse, Transparent, and Robust Counterfactual Explanations
Shubham Sharma
Alan H. Gee
Jette Henderson
Joydeep Ghosh
CMLBDLLRM
54
5
0
12 Oct 2022
Formalising the Robustness of Counterfactual Explanations for Neural
  Networks
Formalising the Robustness of Counterfactual Explanations for Neural Networks
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
AAML
91
27
0
31 Aug 2022
On the Trade-Off between Actionable Explanations and the Right to be
  Forgotten
On the Trade-Off between Actionable Explanations and the Right to be Forgotten
Martin Pawelczyk
Tobias Leemann
Asia J. Biega
Gjergji Kasneci
FaMLMU
109
23
0
30 Aug 2022
Inferring Sensitive Attributes from Model Explanations
Inferring Sensitive Attributes from Model Explanations
Vasisht Duddu
A. Boutet
MIACVSILM
85
17
0
21 Aug 2022
Interpretability Guarantees with Merlin-Arthur Classifiers
Interpretability Guarantees with Merlin-Arthur Classifiers
S. Wäldchen
Kartikey Sharma
Berkant Turan
Max Zimmer
Sebastian Pokutta
FAtt
73
5
0
01 Jun 2022
Global Counterfactual Explanations: Investigations, Implementations and
  Improvements
Global Counterfactual Explanations: Investigations, Implementations and Improvements
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
78
12
0
14 Apr 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
89
38
0
13 Mar 2022
Training Characteristic Functions with Reinforcement Learning:
  XAI-methods play Connect Four
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four
S. Wäldchen
Felix Huber
Sebastian Pokutta
FAtt
61
8
0
23 Feb 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified
  Perturbation Analysis
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
68
42
0
15 Feb 2022
Framework for Evaluating Faithfulness of Local Explanations
Framework for Evaluating Faithfulness of Local Explanations
S. Dasgupta
Nave Frost
Michal Moshkovitz
FAtt
212
63
0
01 Feb 2022
Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial
  Contexts
Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial Contexts
Sebastian Bordt
Michèle Finck
Eric Raidl
U. V. Luxburg
AILaw
106
79
0
25 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
92
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
103
64
0
21 Dec 2021
Bayesian Persuasion for Algorithmic Recourse
Bayesian Persuasion for Algorithmic Recourse
Keegan Harris
Valerie Chen
Joon Sik Kim
Ameet Talwalkar
Hoda Heidari
Zhiwei Steven Wu
64
15
0
12 Dec 2021
Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions
Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions
Prateek Yadav
Peter Hase
Joey Tianyi Zhou
68
11
0
01 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual
  Explanations
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
84
58
0
30 Oct 2021
Transport-based Counterfactual Models
Transport-based Counterfactual Models
Lucas de Lara
Alberto González Sanz
Nicholas M. Asher
Laurent Risser
Jean-Michel Loubes
52
31
0
30 Aug 2021
When and How to Fool Explainable Models (and Humans) with Adversarial
  Examples
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILMAAML
99
14
0
05 Jul 2021
Fooling Partial Dependence via Data Poisoning
Fooling Partial Dependence via Data Poisoning
Hubert Baniecki
Wojciech Kretowicz
P. Biecek
AAML
83
23
0
26 May 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
178
177
0
20 Oct 2020
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.3K
17,197
0
16 Feb 2016
Previous
12