Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.11642
Cited By
Repulsive Deep Ensembles are Bayesian
22 June 2021
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Repulsive Deep Ensembles are Bayesian"
50 / 72 papers shown
Title
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
44
0
0
03 Apr 2025
On Local Posterior Structure in Deep Ensembles
Mikkel Jordahn
Jonas Vestergaard Jensen
Mikkel N. Schmidt
Michael Riis Andersen
UQCV
BDL
OOD
51
0
0
17 Mar 2025
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Jasmeet Kaur
BDL
UQCV
70
0
0
15 Mar 2025
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
90
0
0
14 Mar 2025
Making Reliable and Flexible Decisions in Long-tailed Classification
Bolian Li
Ruqi Zhang
84
0
0
23 Jan 2025
Stein Variational Newton Neural Network Ensembles
Klemens Flöge
Mohammed Abdul Moeed
Vincent Fortuin
BDL
UQCV
35
0
0
04 Nov 2024
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA
David Smerkous
Qinxun Bai
Fuxin Li
BDL
21
0
0
31 Oct 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
45
1
0
30 Oct 2024
Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly Detection
Yi Gu
Yi Lin
Kwang-Ting Cheng
Hao Chen
UQCV
22
2
0
26 Sep 2024
Scalable Ensemble Diversification for OOD Generalization and Detection
Alexander Rubinstein
Luca Scimeca
Damien Teney
Seong Joon Oh
BDL
OOD
351
1
0
25 Sep 2024
Continual learning with the neural tangent ensemble
Ari S. Benjamin
Christian Pehle
Kyle Daruwalla
UQCV
49
0
0
30 Aug 2024
Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
Spencer Young
P. Jenkins
Lonchao Da
Jeff Dotson
Hua Wei
UQCV
BDL
26
2
0
13 Jun 2024
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris N. Oreshkin
Mark J. Coates
34
1
0
28 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
32
9
0
06 May 2024
Pessimistic Value Iteration for Multi-Task Data Sharing in Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Jianye Hao
Zhuoran Yang
Bin Zhao
Zhen Wang
Xuelong Li
OffRL
27
9
0
30 Apr 2024
Diverse Randomized Value Functions: A Provably Pessimistic Approach for Offline Reinforcement Learning
Xudong Yu
Chenjia Bai
Hongyi Guo
Changhong Wang
Zhen Wang
OffRL
27
0
0
09 Apr 2024
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
Ziyu Wang
Chris Holmes
UQCV
27
2
0
28 Mar 2024
Bridging the Sim-to-Real Gap with Bayesian Inference
Jonas Rothfuss
Bhavya Sukhija
Lenart Treven
Florian Dorfler
Stelian Coros
Andreas Krause
AI4CE
29
2
0
25 Mar 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
20
5
0
12 Mar 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
33
18
0
19 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
22
4
0
06 Feb 2024
How Good is a Single Basin?
Kai Lion
Lorenzo Noci
Thomas Hofmann
Gregor Bachmann
UQCV
11
2
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
35
27
0
01 Feb 2024
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSL
BDL
UQCV
16
1
0
30 Nov 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDL
UQCV
10
5
0
12 Oct 2023
Something for (almost) nothing: Improving deep ensemble calibration using unlabeled data
Konstantinos Pitas
Julyan Arbel
BDL
UQCV
FedML
21
0
0
04 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
54
18
0
28 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
53
7
0
25 Sep 2023
Dynamic ensemble selection based on Deep Neural Network Uncertainty Estimation for Adversarial Robustness
Ruoxi Qin
Linyuan Wang
Xuehui Du
Xing-yuan Chen
Binghai Yan
AAML
11
0
0
01 Aug 2023
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
D. C. Hoang
Behzad Ousat
Amin Kharraz
Cuong V Nguyen
AAML
11
1
0
27 Jul 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
24
14
0
06 Jul 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
20
0
0
10 Jun 2023
Input-gradient space particle inference for neural network ensembles
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
UQCV
8
3
0
05 Jun 2023
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
19
6
0
26 May 2023
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
Veit Wild
Sahra Ghalebikesabi
Dino Sejdinovic
Jeremias Knoblauch
BDL
UQCV
19
13
0
24 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
23
75
0
07 May 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
13
8
0
17 Apr 2023
Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification
Antoine de Mathelin
Francois Deheeger
Mathilde Mougeot
Nicolas Vayatis
OOD
UQCV
10
2
0
08 Apr 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
32
9
0
04 Apr 2023
Bayesian Quadrature for Neural Ensemble Search
Saad Hamid
Xingchen Wan
Martin Jørgensen
Binxin Ru
Michael A. Osborne
BDL
UQCV
13
1
0
15 Mar 2023
Long-tailed Classification from a Bayesian-decision-theory Perspective
Bolian Li
Ruqi Zhang
20
1
0
10 Mar 2023
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
R. Khardon
BDL
UQCV
11
0
0
05 Feb 2023
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
17
13
0
01 Feb 2023
Joint Training of Deep Ensembles Fails Due to Learner Collusion
Alan Jeffares
Tennison Liu
Jonathan Crabbé
M. Schaar
FedML
29
15
0
26 Jan 2023
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
10
5
0
15 Dec 2022
Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty
Yugo Fujimotol
Kei Nakagawa
Kentaro Imajo
Kentaro Minami
AIFin
15
3
0
31 Oct 2022
Disentangling the Predictive Variance of Deep Ensembles through the Neural Tangent Kernel
Seijin Kobayashi
Pau Vilimelis Aceituno
J. Oswald
UQCV
11
2
0
18 Oct 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
23
1
0
02 Aug 2022
On the Versatile Uses of Partial Distance Correlation in Deep Learning
Xingjian Zhen
Zihang Meng
Rudrasis Chakraborty
Vikas Singh
OODD
17
27
0
20 Jul 2022
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
G. Nam
Hyungi Lee
Byeongho Heo
Juho Lee
UQCV
FedML
8
7
0
30 Jun 2022
1
2
Next