ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11642
  4. Cited By
Repulsive Deep Ensembles are Bayesian

Repulsive Deep Ensembles are Bayesian

22 June 2021
Francesco DÁngelo
Vincent Fortuin
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Repulsive Deep Ensembles are Bayesian"

22 / 72 papers shown
Title
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
9
4
0
24 Jun 2022
Deep Isolation Forest for Anomaly Detection
Deep Isolation Forest for Anomaly Detection
Hongzuo Xu
Guansong Pang
Yijie Wang
Yongjun Wang
19
182
0
14 Jun 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
16
16
0
08 Jun 2022
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network Ensembles
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
4
11
0
02 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
25
2
0
27 May 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
45
11
0
12 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
14
5
0
30 Apr 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural
  Representations for Computed Tomography
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
24
12
0
22 Feb 2022
Diversify and Disambiguate: Learning From Underspecified Data
Diversify and Disambiguate: Learning From Underspecified Data
Yoonho Lee
Huaxiu Yao
Chelsea Finn
203
64
0
07 Feb 2022
On out-of-distribution detection with Bayesian neural networks
On out-of-distribution detection with Bayesian neural networks
Francesco DÁngelo
Christian Henning
BDL
UQCV
21
6
0
12 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
29
9
0
08 Oct 2021
Sparse MoEs meet Efficient Ensembles
Sparse MoEs meet Efficient Ensembles
J. Allingham
F. Wenzel
Zelda E. Mariet
Basil Mustafa
J. Puigcerver
...
Balaji Lakshminarayanan
Jasper Snoek
Dustin Tran
Carlos Riquelme Ruiz
Rodolphe Jenatton
MoE
39
21
0
07 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
34
48
0
06 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
26
11
0
06 Oct 2021
Neural Variational Gradient Descent
Neural Variational Gradient Descent
L. Langosco
Vincent Fortuin
Heiko Strathmann
BDL
22
19
0
22 Jul 2021
A Bayesian Approach to Invariant Deep Neural Networks
A Bayesian Approach to Invariant Deep Neural Networks
Nikolaos Mourdoukoutas
Marco Federici
G. Pantalos
Mark van der Wilk
Vincent Fortuin
BDL
UQCV
21
0
0
20 Jul 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCV
FedML
31
4
0
29 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
24
124
0
14 May 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Robust Out-of-distribution Detection for Neural Networks
Robust Out-of-distribution Detection for Neural Networks
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
150
84
0
21 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Previous
12