ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11642
  4. Cited By
Repulsive Deep Ensembles are Bayesian

Repulsive Deep Ensembles are Bayesian

22 June 2021
Francesco DÁngelo
Vincent Fortuin
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Repulsive Deep Ensembles are Bayesian"

50 / 72 papers shown
Title
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
44
0
0
03 Apr 2025
On Local Posterior Structure in Deep Ensembles
On Local Posterior Structure in Deep Ensembles
Mikkel Jordahn
Jonas Vestergaard Jensen
Mikkel N. Schmidt
Michael Riis Andersen
UQCV
BDL
OOD
51
0
0
17 Mar 2025
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Jasmeet Kaur
BDL
UQCV
70
0
0
15 Mar 2025
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
108
0
0
14 Mar 2025
Making Reliable and Flexible Decisions in Long-tailed Classification
Making Reliable and Flexible Decisions in Long-tailed Classification
Bolian Li
Ruqi Zhang
104
0
0
23 Jan 2025
Stein Variational Newton Neural Network Ensembles
Stein Variational Newton Neural Network Ensembles
Klemens Flöge
Mohammed Abdul Moeed
Vincent Fortuin
BDL
UQCV
37
0
0
04 Nov 2024
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy
  Minimization of CKA
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA
David Smerkous
Qinxun Bai
Fuxin Li
BDL
21
0
0
31 Oct 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
45
1
0
30 Oct 2024
Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly
  Detection
Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly Detection
Yi Gu
Yi Lin
Kwang-Ting Cheng
Hao Chen
UQCV
31
2
0
26 Sep 2024
Scalable Ensemble Diversification for OOD Generalization and Detection
Scalable Ensemble Diversification for OOD Generalization and Detection
Alexander Rubinstein
Luca Scimeca
Damien Teney
Seong Joon Oh
BDL
OOD
353
1
0
25 Sep 2024
Continual learning with the neural tangent ensemble
Continual learning with the neural tangent ensemble
Ari S. Benjamin
Christian Pehle
Kyle Daruwalla
UQCV
54
0
0
30 Aug 2024
Flexible Heteroscedastic Count Regression with Deep Double Poisson
  Networks
Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
Spencer Young
P. Jenkins
Lonchao Da
Jeff Dotson
Hua Wei
UQCV
BDL
31
2
0
13 Jun 2024
MODL: Multilearner Online Deep Learning
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris N. Oreshkin
Mark J. Coates
34
1
0
28 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of
  Large Language Models
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
37
9
0
06 May 2024
Pessimistic Value Iteration for Multi-Task Data Sharing in Offline
  Reinforcement Learning
Pessimistic Value Iteration for Multi-Task Data Sharing in Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Jianye Hao
Zhuoran Yang
Bin Zhao
Zhen Wang
Xuelong Li
OffRL
29
9
0
30 Apr 2024
Diverse Randomized Value Functions: A Provably Pessimistic Approach for
  Offline Reinforcement Learning
Diverse Randomized Value Functions: A Provably Pessimistic Approach for Offline Reinforcement Learning
Xudong Yu
Chenjia Bai
Hongyi Guo
Changhong Wang
Zhen Wang
OffRL
32
0
0
09 Apr 2024
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
Ziyu Wang
Chris Holmes
UQCV
34
2
0
28 Mar 2024
Bridging the Sim-to-Real Gap with Bayesian Inference
Bridging the Sim-to-Real Gap with Bayesian Inference
Jonas Rothfuss
Bhavya Sukhija
Lenart Treven
Florian Dorfler
Stelian Coros
Andreas Krause
AI4CE
31
2
0
25 Mar 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior
  Sampling
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
27
5
0
12 Mar 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
33
18
0
19 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
32
4
0
06 Feb 2024
How Good is a Single Basin?
How Good is a Single Basin?
Kai Lion
Lorenzo Noci
Thomas Hofmann
Gregor Bachmann
UQCV
18
2
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSL
BDL
UQCV
21
1
0
30 Nov 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDL
UQCV
20
5
0
12 Oct 2023
Something for (almost) nothing: Improving deep ensemble calibration
  using unlabeled data
Something for (almost) nothing: Improving deep ensemble calibration using unlabeled data
Konstantinos Pitas
Julyan Arbel
BDL
UQCV
FedML
26
0
0
04 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
53
7
0
25 Sep 2023
Dynamic ensemble selection based on Deep Neural Network Uncertainty
  Estimation for Adversarial Robustness
Dynamic ensemble selection based on Deep Neural Network Uncertainty Estimation for Adversarial Robustness
Ruoxi Qin
Linyuan Wang
Xuehui Du
Xing-yuan Chen
Binghai Yan
AAML
15
0
0
01 Aug 2023
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical
  Guarantees
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
D. C. Hoang
Behzad Ousat
Amin Kharraz
Cuong V Nguyen
AAML
13
1
0
27 Jul 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
35
14
0
06 Jul 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
25
0
0
10 Jun 2023
Input-gradient space particle inference for neural network ensembles
Input-gradient space particle inference for neural network ensembles
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
UQCV
13
3
0
05 Jun 2023
Improving Neural Additive Models with Bayesian Principles
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
26
6
0
26 May 2023
A Rigorous Link between Deep Ensembles and (Variational) Bayesian
  Methods
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
Veit Wild
Sahra Ghalebikesabi
Dino Sejdinovic
Jeremias Knoblauch
BDL
UQCV
21
13
0
24 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
25
75
0
07 May 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
15
8
0
17 Apr 2023
Deep Anti-Regularized Ensembles provide reliable out-of-distribution
  uncertainty quantification
Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification
Antoine de Mathelin
Francois Deheeger
Mathilde Mougeot
Nicolas Vayatis
OOD
UQCV
12
2
0
08 Apr 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
34
9
0
04 Apr 2023
Bayesian Quadrature for Neural Ensemble Search
Bayesian Quadrature for Neural Ensemble Search
Saad Hamid
Xingchen Wan
Martin Jørgensen
Binxin Ru
Michael A. Osborne
BDL
UQCV
25
1
0
15 Mar 2023
Long-tailed Classification from a Bayesian-decision-theory Perspective
Long-tailed Classification from a Bayesian-decision-theory Perspective
Bolian Li
Ruqi Zhang
22
1
0
10 Mar 2023
Variational Inference on the Final-Layer Output of Neural Networks
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
R. Khardon
BDL
UQCV
16
0
0
05 Feb 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
27
13
0
01 Feb 2023
Joint Training of Deep Ensembles Fails Due to Learner Collusion
Joint Training of Deep Ensembles Fails Due to Learner Collusion
Alan Jeffares
Tennison Liu
Jonathan Crabbé
M. Schaar
FedML
34
15
0
26 Jan 2023
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Uncertainty Aware Trader-Company Method: Interpretable Stock Price
  Prediction Capturing Uncertainty
Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty
Yugo Fujimotol
Kei Nakagawa
Kentaro Imajo
Kentaro Minami
AIFin
24
3
0
31 Oct 2022
Disentangling the Predictive Variance of Deep Ensembles through the
  Neural Tangent Kernel
Disentangling the Predictive Variance of Deep Ensembles through the Neural Tangent Kernel
Seijin Kobayashi
Pau Vilimelis Aceituno
J. Oswald
UQCV
18
2
0
18 Oct 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold
  Geometry
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
32
1
0
02 Aug 2022
On the Versatile Uses of Partial Distance Correlation in Deep Learning
On the Versatile Uses of Partial Distance Correlation in Deep Learning
Xingjian Zhen
Zihang Meng
Rudrasis Chakraborty
Vikas Singh
OODD
19
27
0
20 Jul 2022
Improving Ensemble Distillation With Weight Averaging and Diversifying
  Perturbation
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
G. Nam
Hyungi Lee
Byeongho Heo
Juho Lee
UQCV
FedML
10
7
0
30 Jun 2022
12
Next