ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01959
  4. Cited By
Universal Approximation of Functions on Sets

Universal Approximation of Functions on Sets

5 July 2021
E. Wagstaff
F. Fuchs
Martin Engelcke
Michael A. Osborne
Ingmar Posner
    PINN
ArXivPDFHTML

Papers citing "Universal Approximation of Functions on Sets"

43 / 43 papers shown
Title
PC-DeepNet: A GNSS Positioning Error Minimization Framework Using Permutation-Invariant Deep Neural Network
PC-DeepNet: A GNSS Positioning Error Minimization Framework Using Permutation-Invariant Deep Neural Network
M. Humayun Kabir
Md. Ali Hasan
Md. Shafiqul Islam
Kyeongjun Ko
Wonjae Shin
29
0
0
18 Apr 2025
Fourier Sliced-Wasserstein Embedding for Multisets and Measures
Fourier Sliced-Wasserstein Embedding for Multisets and Measures
Tal Amir
Nadav Dym
48
2
0
03 Apr 2025
Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs
Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs
Milan Papez
Martin Rektoris
Václav Smídl
Tomás Pevný
TPM
78
0
0
15 Mar 2025
Learning Fair and Preferable Allocations through Neural Network
Learning Fair and Preferable Allocations through Neural Network
Ryota Maruo
Koh Takeuchi
Hisashi Kashima
35
0
0
23 Oct 2024
DeepOSets: Non-Autoregressive In-Context Learning of Supervised Learning Operators
DeepOSets: Non-Autoregressive In-Context Learning of Supervised Learning Operators
Shao-Ting Chiu
Junyuan Hong
Ulisses Braga-Neto
BDL
23
0
0
11 Oct 2024
SetPINNs: Set-based Physics-informed Neural Networks
SetPINNs: Set-based Physics-informed Neural Networks
M. Nagda
Phil Ostheimer
Thomas Specht
Frank Rhein
F. Jirasek
Stephan Mandt
Sophie Fellenz
Sophie Fellenz
PINN
3DPC
46
0
0
30 Sep 2024
Decomposition of Equivariant Maps via Invariant Maps: Application to
  Universal Approximation under Symmetry
Decomposition of Equivariant Maps via Invariant Maps: Application to Universal Approximation under Symmetry
Akiyoshi Sannai
Yuuki Takai
Matthieu Cordonnier
160
0
0
25 Sep 2024
GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings
GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings
Milan Papež
Martin Rektoris
Václav Šmídl
Tomáš Pevný
TPM
47
0
0
18 Aug 2024
Consensus Learning with Deep Sets for Essential Matrix Estimation
Consensus Learning with Deep Sets for Essential Matrix Estimation
Dror Moran
Yuval Margalit
Guy Trostianetsky
Fadi Khatib
Meirav Galun
Ronen Basri
3DV
43
0
0
25 Jun 2024
In-Context In-Context Learning with Transformer Neural Processes
In-Context In-Context Learning with Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
Richard E. Turner
26
3
0
19 Jun 2024
Translation Equivariant Transformer Neural Processes
Translation Equivariant Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Junhyuck Kim
Lakee Sivaraya
Stratis Markou
James Requeima
W. Bruinsma
Richard E. Turner
41
4
0
18 Jun 2024
AlphaZeroES: Direct score maximization outperforms planning loss
  minimization
AlphaZeroES: Direct score maximization outperforms planning loss minimization
Carlos Martin
Tuomas Sandholm
25
0
0
12 Jun 2024
On permutation-invariant neural networks
On permutation-invariant neural networks
Masanari Kimura
Ryotaro Shimizu
Yuki Hirakawa
Ryosuke Goto
Yuki Saito
OOD
AAML
33
12
0
26 Mar 2024
Uniform $\mathcal{C}^k$ Approximation of $G$-Invariant and Antisymmetric
  Functions, Embedding Dimensions, and Polynomial Representations
Uniform Ck\mathcal{C}^kCk Approximation of GGG-Invariant and Antisymmetric Functions, Embedding Dimensions, and Polynomial Representations
Soumya Ganguly
Khoa Tran
Rahul Sarkar
36
0
0
02 Mar 2024
Towards Context-Aware Domain Generalization: Understanding the Benefits
  and Limits of Marginal Transfer Learning
Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
Jens Müller
Lars Kühmichel
Martin Rohbeck
Stefan T. Radev
Ullrich Kothe
OOD
32
0
0
15 Dec 2023
Mosaic-SDF for 3D Generative Models
Mosaic-SDF for 3D Generative Models
Lior Yariv
Omri Puny
Natalia Neverova
Oran Gafni
Y. Lipman
24
37
0
14 Dec 2023
Tabular Few-Shot Generalization Across Heterogeneous Feature Spaces
Tabular Few-Shot Generalization Across Heterogeneous Feature Spaces
Max Zhu
Katarzyna Kobalczyk
Andrija Petrović
Mladen Nikolic
M. Schaar
Boris Delibasic
Petro Lio
25
2
0
16 Nov 2023
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
28
15
0
04 Oct 2023
A Unified Framework for Discovering Discrete Symmetries
A Unified Framework for Discovering Discrete Symmetries
Pavan Karjol
Rohan Kashyap
Aditya Gopalan
Prathosh A.P.
19
2
0
06 Sep 2023
Learning multi-modal generative models with permutation-invariant
  encoders and tighter variational bounds
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
8
0
0
01 Sep 2023
Probabilistic Invariant Learning with Randomized Linear Classifiers
Probabilistic Invariant Learning with Randomized Linear Classifiers
Leonardo Cotta
Gal Yehuda
Assaf Schuster
Chris J. Maddison
10
2
0
08 Aug 2023
Neural approximation of Wasserstein distance via a universal
  architecture for symmetric and factorwise group invariant functions
Neural approximation of Wasserstein distance via a universal architecture for symmetric and factorwise group invariant functions
Samantha Chen
Yusu Wang
15
3
0
01 Aug 2023
Explainable Equivariant Neural Networks for Particle Physics: PELICAN
Explainable Equivariant Neural Networks for Particle Physics: PELICAN
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
Xiaoyang Liu
29
24
0
31 Jul 2023
Polynomial Width is Sufficient for Set Representation with
  High-dimensional Features
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Peihao Wang
Shenghao Yang
Shu Li
Zhangyang Wang
Pan Li
19
3
0
08 Jul 2023
Practical Equivariances via Relational Conditional Neural Processes
Practical Equivariances via Relational Conditional Neural Processes
Daolang Huang
Manuel Haussmann
Ulpu Remes
S. T. John
Grégoire Clarté
K. Luck
Samuel Kaski
Luigi Acerbi
BDL
54
8
0
19 Jun 2023
Neural Injective Functions for Multisets, Measures and Graphs via a
  Finite Witness Theorem
Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem
Tal Amir
S. Gortler
Ilai Avni
Ravi Ravina
Nadav Dym
97
23
0
10 Jun 2023
Fast computation of permutation equivariant layers with the partition
  algebra
Fast computation of permutation equivariant layers with the partition algebra
Charles Godfrey
Michael G. Rawson
Davis Brown
Henry Kvinge
38
6
0
10 Mar 2023
Complete Neural Networks for Complete Euclidean Graphs
Complete Neural Networks for Complete Euclidean Graphs
Snir Hordan
Tal Amir
S. Gortler
Nadav Dym
3DPC
24
5
0
31 Jan 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong Son-Hy
Rose Yu
Yusu Wang
31
51
0
27 Jan 2023
Stretched and measured neural predictions of complex network dynamics
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
17
1
0
12 Jan 2023
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
68
24
0
01 Sep 2022
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
19
34
0
27 Aug 2022
Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased
  Full Set Gradient Approximation
Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation
Jeffrey Willette
Seanie Lee
Bruno Andreis
Kenji Kawaguchi
Juho Lee
S. Hwang
13
3
0
26 Aug 2022
Deep Neural Network Approximation of Invariant Functions through
  Dynamical Systems
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
13
6
0
18 Aug 2022
Towards Antisymmetric Neural Ansatz Separation
Towards Antisymmetric Neural Ansatz Separation
Aaron Zweig
Joan Bruna
18
4
0
05 Aug 2022
Exponential Separations in Symmetric Neural Networks
Exponential Separations in Symmetric Neural Networks
Aaron Zweig
Joan Bruna
27
7
0
02 Jun 2022
Graph Ordering Attention Networks
Graph Ordering Attention Networks
Michail Chatzianastasis
J. Lutzeyer
George Dasoulas
Michalis Vazirgiannis
GNN
25
18
0
11 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
42
39
0
25 Mar 2022
Equilibrium Aggregation: Encoding Sets via Optimization
Equilibrium Aggregation: Encoding Sets via Optimization
Sergey Bartunov
F. Fuchs
Timothy Lillicrap
19
7
0
25 Feb 2022
SHIFT15M: Fashion-specific dataset for set-to-set matching with several
  distribution shifts
SHIFT15M: Fashion-specific dataset for set-to-set matching with several distribution shifts
Masanari Kimura
Takuma Nakamura
Yuki Saito
OOD
31
3
0
30 Aug 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
73
185
0
19 Apr 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1