Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.05719
Cited By
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
12 July 2021
Shengjia Zhao
Michael P. Kim
Roshni Sahoo
Tengyu Ma
Stefano Ermon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration"
40 / 40 papers shown
Title
Always Tell Me The Odds: Fine-grained Conditional Probability Estimation
Liaoyaqi Wang
Zhengping Jiang
Anqi Liu
Benjamin Van Durme
61
0
0
02 May 2025
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Rabanus Derr
Jessie Finocchiaro
Robert C. Williamson
38
0
0
25 Apr 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
High dimensional online calibration in polynomial time
Binghui Peng
22
0
0
12 Apr 2025
Conformal Prediction and Human Decision Making
Jessica Hullman
Yifan Wu
Dawei Xie
Ziyang Guo
Andrew Gelman
39
0
0
12 Mar 2025
Conformal Linguistic Calibration: Trading-off between Factuality and Specificity
Zhengping Jiang
Anqi Liu
Benjamin Van Durme
84
1
0
26 Feb 2025
Decision Theoretic Foundations for Conformal Prediction: Optimal Uncertainty Quantification for Risk-Averse Agents
Shayan Kiyani
George Pappas
Aaron Roth
Hamed Hassani
109
3
0
04 Feb 2025
Confidence Calibration of Classifiers with Many Classes
Adrien LeCoz
Stéphane Herbin
Faouzi Adjed
UQCV
37
1
0
05 Nov 2024
Calibrated Probabilistic Forecasts for Arbitrary Sequences
Charles Marx
Volodymyr Kuleshov
Stefano Ermon
AI4TS
36
1
0
27 Sep 2024
A Decision-driven Methodology for Designing Uncertainty-aware AI Self-Assessment
Charles Oredola
Vladimir Leung
Adnan Ashraf
Eric Heim
I-Jeng Wang
38
1
0
02 Aug 2024
Calibrating Where It Matters: Constrained Temperature Scaling
Stephen McKenna
Jacob Carse
18
0
0
17 Jun 2024
When is Multicalibration Post-Processing Necessary?
Dutch Hansen
Siddartha Devic
Preetum Nakkiran
Vatsal Sharan
40
4
0
10 Jun 2024
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
M. Chidambaram
Rong Ge
66
1
0
06 Jun 2024
Reconciling Model Multiplicity for Downstream Decision Making
Ally Yalei Du
Dung Daniel Ngo
Zhiwei Steven Wu
29
5
0
30 May 2024
Model Ensembling for Constrained Optimization
Ira Globus-Harris
Varun Gupta
Michael Kearns
Aaron Roth
38
0
0
27 May 2024
FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler
Hongyi Peng
Han Yu
Xiaoli Tang
Xiaoxiao Li
41
3
0
24 May 2024
Enhancing Learning with Label Differential Privacy by Vector Approximation
Puning Zhao
Rongfei Fan
Huiwen Wu
Qingming Li
Jiafei Wu
Zhe Liu
28
1
0
24 May 2024
Fair Risk Control: A Generalized Framework for Calibrating Multi-group Fairness Risks
Lujing Zhang
Aaron Roth
Linjun Zhang
FaML
17
6
0
03 May 2024
Forecasting for Swap Regret for All Downstream Agents
Aaron Roth
Mirah Shi
25
9
0
13 Feb 2024
On Computationally Efficient Multi-Class Calibration
Parikshit Gopalan
Lunjia Hu
G. Rothblum
12
6
0
12 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Calibration by Distribution Matching: Trainable Kernel Calibration Metrics
Charles Marx
Sofian Zalouk
Stefano Ermon
27
6
0
31 Oct 2023
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
28
2
0
05 Jul 2023
Calibrating Multimodal Learning
Huanrong Zhang
Changqing Zhang
Bing Wu
H. Fu
Joey Tianyi Zhou
Q. Hu
59
16
0
02 Jun 2023
Human-Aligned Calibration for AI-Assisted Decision Making
N. C. Benz
Manuel Gomez Rodriguez
17
17
0
31 May 2023
Comparative Learning: A Sample Complexity Theory for Two Hypothesis Classes
Lunjia Hu
Charlotte Peale
35
6
0
16 Nov 2022
Useful Confidence Measures: Beyond the Max Score
G. Yona
Amir Feder
Itay Laish
81
5
0
25 Oct 2022
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity
Dennis Ulmer
J. Frellsen
Christian Hardmeier
185
22
0
20 Oct 2022
A Consistent and Differentiable Lp Canonical Calibration Error Estimator
Teodora Popordanoska
Raphael Sayer
Matthew B. Blaschko
UQCV
15
29
0
13 Oct 2022
Making Decisions under Outcome Performativity
Michael P. Kim
Juan C. Perdomo
32
20
0
04 Oct 2022
Multicalibrated Regression for Downstream Fairness
Ira Globus-Harris
Varun Gupta
Christopher Jung
Michael Kearns
Jamie Morgenstern
Aaron Roth
FaML
47
11
0
15 Sep 2022
Modular Conformal Calibration
Charles Marx
Shengjia Zhao
W. Neiswanger
Stefano Ermon
29
15
0
23 Jun 2022
Evaluating Uncertainty Calibration for Open-Set Recognition
Zongyao Lyu
Nolan B. Gutierrez
William J. Beksi
UQCV
27
1
0
15 May 2022
Metric Entropy Duality and the Sample Complexity of Outcome Indistinguishability
Lunjia Hu
Charlotte Peale
Omer Reingold
8
5
0
09 Mar 2022
Towards a Responsible AI Development Lifecycle: Lessons From Information Security
Erick Galinkin
SILM
11
6
0
06 Mar 2022
Low-Degree Multicalibration
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
FaML
UQCV
22
37
0
02 Mar 2022
Calibrated Learning to Defer with One-vs-All Classifiers
Rajeev Verma
Eric Nalisnick
21
42
0
08 Feb 2022
Improving Screening Processes via Calibrated Subset Selection
Lequn Wang
Thorsten Joachims
Manuel Gomez Rodriguez
CML
27
18
0
02 Feb 2022
Scaffolding Sets
M. Burhanpurkar
Zhun Deng
Cynthia Dwork
Linjun Zhang
28
9
0
04 Nov 2021
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
16
14
0
22 Feb 2021
1