ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.07467
  4. Cited By
Only Train Once: A One-Shot Neural Network Training And Pruning
  Framework

Only Train Once: A One-Shot Neural Network Training And Pruning Framework

15 July 2021
Tianyi Chen
Bo Ji
Tianyu Ding
Biyi Fang
Guanyi Wang
Zhihui Zhu
Luming Liang
Yixin Shi
Sheng Yi
Xiao Tu
ArXivPDFHTML

Papers citing "Only Train Once: A One-Shot Neural Network Training And Pruning Framework"

15 / 15 papers shown
Title
Information Consistent Pruning: How to Efficiently Search for Sparse Networks?
Soheil Gharatappeh
S. Y. Sekeh
54
0
0
28 Jan 2025
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
Tianyi Chen
Xiaoyi Qu
David Aponte
Colby R. Banbury
Jongwoo Ko
Tianyu Ding
Yong Ma
Vladimir Lyapunov
Ilya Zharkov
Luming Liang
77
1
0
11 Sep 2024
Structure-Preserving Network Compression Via Low-Rank Induced Training
  Through Linear Layers Composition
Structure-Preserving Network Compression Via Low-Rank Induced Training Through Linear Layers Composition
Xitong Zhang
Ismail R. Alkhouri
Rongrong Wang
35
0
0
06 May 2024
ONNXPruner: ONNX-Based General Model Pruning Adapter
ONNXPruner: ONNX-Based General Model Pruning Adapter
Dongdong Ren
Wenbin Li
Tianyu Ding
Lei Wang
Qi Fan
Jing Huo
Hongbing Pan
Yang Gao
31
3
0
10 Apr 2024
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Samuel Horváth
Stefanos Laskaridis
Shashank Rajput
Hongyi Wang
BDL
32
4
0
28 Aug 2023
Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications
Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications
Vasileios Leon
Muhammad Abdullah Hanif
Giorgos Armeniakos
Xun Jiao
Muhammad Shafique
K. Pekmestzi
Dimitrios Soudris
29
3
0
20 Jul 2023
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
  Aggregator Network for Particle Physics
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
16
30
0
01 Nov 2022
SInGE: Sparsity via Integrated Gradients Estimation of Neuron Relevance
SInGE: Sparsity via Integrated Gradients Estimation of Neuron Relevance
Edouard Yvinec
Arnaud Dapogny
Matthieu Cord
Kévin Bailly
40
9
0
08 Jul 2022
Deep Neural Networks pruning via the Structured Perspective
  Regularization
Deep Neural Networks pruning via the Structured Perspective Regularization
M. Cacciola
A. Frangioni
Xinlin Li
Andrea Lodi
3DPC
28
5
0
28 Jun 2022
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another
  in Neural Networks
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks
Xin Yu
Thiago Serra
Srikumar Ramalingam
Shandian Zhe
36
48
0
09 Mar 2022
SCOP: Scientific Control for Reliable Neural Network Pruning
SCOP: Scientific Control for Reliable Neural Network Pruning
Yehui Tang
Yunhe Wang
Yixing Xu
Dacheng Tao
Chunjing Xu
Chao Xu
Chang Xu
AAML
44
166
0
21 Oct 2020
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for
  Network Compression
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression
Yawei Li
Shuhang Gu
Christoph Mayer
Luc Van Gool
Radu Timofte
126
189
0
19 Mar 2020
Highly Efficient Salient Object Detection with 100K Parameters
Highly Efficient Salient Object Detection with 100K Parameters
Shanghua Gao
Yong-qiang Tan
Ming-Ming Cheng
Chengze Lu
Yunpeng Chen
Shuicheng Yan
231
168
0
12 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
224
383
0
05 Mar 2020
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1