Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.10098
Cited By
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
21 July 2021
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA"
20 / 20 papers shown
Title
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Yichao Cai
Yuhang Liu
Erdun Gao
T. Jiang
Zhen Zhang
Anton van den Hengel
J. Shi
55
0
0
14 Apr 2025
What is causal about causal models and representations?
Frederik Hytting Jørgensen
Luigi Gresele
S. Weichwald
CML
103
0
0
31 Jan 2025
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
85
2
0
18 Dec 2024
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
56
4
0
18 Oct 2024
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
24
0
0
16 Oct 2024
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
28
0
0
30 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
35
0
0
24 May 2024
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
22
4
0
08 Nov 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
18
6
0
02 Jul 2023
Partial Identifiability for Domain Adaptation
Lingjing Kong
Shaoan Xie
Weiran Yao
Yujia Zheng
Guan-Hong Chen
P. Stojanov
Victor Akinwande
Kun Zhang
40
8
0
10 Jun 2023
Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios
Luca Castri
Sariah Mghames
Marc Hanheide
Nicola Bellotto
CML
24
10
0
20 Feb 2023
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
25
41
0
06 Feb 2023
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
Yuejiang Liu
Alexandre Alahi
Chris Russell
Max Horn
Dominik Zietlow
Bernhard Schölkopf
Francesco Locatello
CML
49
22
0
12 Jan 2023
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
21
35
0
07 Nov 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
28
48
0
04 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
30
58
0
02 Jun 2022
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
15
44
0
20 Oct 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
75
117
0
18 Oct 2019
1