ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10098
  4. Cited By
Disentanglement via Mechanism Sparsity Regularization: A New Principle
  for Nonlinear ICA

Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA

21 July 2021
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
    CML
    OOD
ArXivPDFHTML

Papers citing "Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA"

20 / 20 papers shown
Title
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Yichao Cai
Yuhang Liu
Erdun Gao
T. Jiang
Zhen Zhang
Anton van den Hengel
J. Shi
55
0
0
14 Apr 2025
What is causal about causal models and representations?
What is causal about causal models and representations?
Frederik Hytting Jørgensen
Luigi Gresele
S. Weichwald
CML
103
0
0
31 Jan 2025
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
85
2
0
18 Dec 2024
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
56
4
0
18 Oct 2024
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
24
0
0
16 Oct 2024
Sparsity regularization via tree-structured environments for
  disentangled representations
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
28
0
0
30 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
35
0
0
24 May 2024
Towards a Unified Framework of Contrastive Learning for Disentangled
  Representations
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
22
4
0
08 Nov 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
18
6
0
02 Jul 2023
Partial Identifiability for Domain Adaptation
Partial Identifiability for Domain Adaptation
Lingjing Kong
Shaoan Xie
Weiran Yao
Yujia Zheng
Guan-Hong Chen
P. Stojanov
Victor Akinwande
Kun Zhang
40
8
0
10 Jun 2023
Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios
Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios
Luca Castri
Sariah Mghames
Marc Hanheide
Nicola Bellotto
CML
24
10
0
20 Feb 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
25
41
0
06 Feb 2023
Causal Triplet: An Open Challenge for Intervention-centric Causal
  Representation Learning
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
Yuejiang Liu
Alexandre Alahi
Chris Russell
Max Horn
Dominik Zietlow
Bernhard Schölkopf
Francesco Locatello
CML
49
22
0
12 Jan 2023
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
21
35
0
07 Nov 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
28
48
0
04 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
30
58
0
02 Jun 2022
Identifiable Deep Generative Models via Sparse Decoding
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
15
44
0
20 Oct 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
Masked Gradient-Based Causal Structure Learning
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
77
117
0
18 Oct 2019
1