Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.10346
Cited By
Explaining Bayesian Neural Networks
23 August 2021
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Bayesian Neural Networks"
17 / 17 papers shown
Title
Efficient Model Compression for Bayesian Neural Networks
Diptarka Saha
Zihe Liu
Feng Liang
BDL
19
0
0
01 Nov 2024
Sanity Checks for Explanation Uncertainty
Matias Valdenegro-Toro
Mihir Mulye
FAtt
18
0
0
25 Mar 2024
Uncertainty Quantification for Gradient-based Explanations in Neural Networks
Mihir Mulye
Matias Valdenegro-Toro
UQCV
FAtt
31
0
0
25 Mar 2024
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
Elham Kiyani
M. Kooshkbaghi
K. Shukla
R. Koneru
Zhen Li
L. Bravo
A. Ghoshal
George Karniadakis
M. Karttunen
AI4CE
17
4
0
18 Jul 2023
Finding the right XAI method -- A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science
P. Bommer
M. Kretschmer
Anna Hedström
Dilyara Bareeva
Marina M.-C. Höhne
24
37
0
01 Mar 2023
BALANCE: Bayesian Linear Attribution for Root Cause Localization
Chaoyu Chen
Hang Yu
Zhichao Lei
Jianguo Li
Shaokang Ren
Tingkai Zhang
Si-Yu Hu
Jianchao Wang
Wenhui Shi
21
7
0
31 Jan 2023
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
11
12
0
09 Jun 2022
Explainable Deep Learning Methods in Medical Image Classification: A Survey
Cristiano Patrício
João C. Neves
Luís F. Teixeira
XAI
11
52
0
10 May 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
11
167
0
14 Feb 2022
Visualizing the Diversity of Representations Learned by Bayesian Neural Networks
Dennis Grinwald
Kirill Bykov
Shinichi Nakajima
Marina M.-C. Höhne
8
5
0
26 Jan 2022
Dense Uncertainty Estimation via an Ensemble-based Conditional Latent Variable Model
Jing Zhang
Yuchao Dai
Mehrtash Harandi
Yiran Zhong
Nick Barnes
Richard I. Hartley
UQCV
11
1
0
22 Nov 2021
Self-Supervised Learning for 3D Medical Image Analysis using 3D SimCLR and Monte Carlo Dropout
Yamen Ali
Aiham Taleb
Marina M.-C. Höhne
C. Lippert
SSL
3DPC
11
6
0
29 Sep 2021
NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model Weights
Kirill Bykov
Anna Hedström
Shinichi Nakajima
Marina M.-C. Höhne
FAtt
6
34
0
18 Jun 2021
Fixing the train-test resolution discrepancy: FixEfficientNet
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
AAML
176
110
0
18 Mar 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,791
0
17 Sep 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
228
2,231
0
24 Jun 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1