ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.01394
  4. Cited By
Topographic VAEs learn Equivariant Capsules

Topographic VAEs learn Equivariant Capsules

3 September 2021
Thomas Anderson Keller
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Topographic VAEs learn Equivariant Capsules"

27 / 27 papers shown
Title
On the Ability of Deep Networks to Learn Symmetries from Data: A Neural
  Kernel Theory
On the Ability of Deep Networks to Learn Symmetries from Data: A Neural Kernel Theory
Andrea Perin
Stéphane Deny
88
1
0
16 Dec 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
29
0
0
07 Oct 2024
Poisson Variational Autoencoder
Poisson Variational Autoencoder
Hadi Vafaii
Dekel Galor
Jacob L. Yates
DRL
35
2
0
23 May 2024
A Generative Model of Symmetry Transformations
A Generative Model of Symmetry Transformations
J. Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric T. Nalisnick
José Miguel Hernández-Lobato
GAN
30
3
0
04 Mar 2024
CFASL: Composite Factor-Aligned Symmetry Learning for Disentanglement in
  Variational AutoEncoder
CFASL: Composite Factor-Aligned Symmetry Learning for Disentanglement in Variational AutoEncoder
Heeseung Jung
Jaehyoung Jeong
Kangil Kim
CoGe
21
0
0
17 Jan 2024
From Pointwise to Powerhouse: Initialising Neural Networks with
  Generative Models
From Pointwise to Powerhouse: Initialising Neural Networks with Generative Models
Christian Harder
Moritz Fuchs
Yuri Tolkach
Anirban Mukhopadhyay
23
0
0
25 Oct 2023
Improving Equivariance in State-of-the-Art Supervised Depth and Normal
  Predictors
Improving Equivariance in State-of-the-Art Supervised Depth and Normal Predictors
Yuanyi Zhong
Anand Bhattad
Yu-Xiong Wang
David Forsyth
MDE
16
2
0
28 Sep 2023
Flow Factorized Representation Learning
Flow Factorized Representation Learning
Yue Song
Thomas Anderson Keller
N. Sebe
Max Welling
DRL
OOD
16
3
0
22 Sep 2023
Traveling Waves Encode the Recent Past and Enhance Sequence Learning
Traveling Waves Encode the Recent Past and Enhance Sequence Learning
Thomas Anderson Keller
L. Muller
T. Sejnowski
Max Welling
AI4TS
12
13
0
03 Sep 2023
End-to-end topographic networks as models of cortical map formation and
  human visual behaviour: moving beyond convolutions
End-to-end topographic networks as models of cortical map formation and human visual behaviour: moving beyond convolutions
Zejin Lu
Adrien Doerig
V. Bosch
Bas Krahmer
Daniel Kaiser
Radoslaw Martin Cichy
Tim C Kietzmann
MedIm
8
8
0
18 Aug 2023
DUET: 2D Structured and Approximately Equivariant Representations
DUET: 2D Structured and Approximately Equivariant Representations
Xavier Suau
Federico Danieli
Thomas Anderson Keller
Arno Blaas
Chen Huang
Jason Ramapuram
Dan Busbridge
Luca Zappella
17
3
0
28 Jun 2023
Neural Fourier Transform: A General Approach to Equivariant
  Representation Learning
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
Masanori Koyama
Kenji Fukumizu
Kohei Hayashi
Takeru Miyato
16
8
0
29 May 2023
Causal Component Analysis
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
16
36
0
26 May 2023
Latent Traversals in Generative Models as Potential Flows
Latent Traversals in Generative Models as Potential Flows
Yue Song
Andy Keller
N. Sebe
Max Welling
DRL
21
10
0
25 Apr 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
24
1
0
24 Mar 2023
Self-Organising Neural Discrete Representation Learning à la Kohonen
Self-Organising Neural Discrete Representation Learning à la Kohonen
Kazuki Irie
Róbert Csordás
Jürgen Schmidhuber
SSL
11
1
0
15 Feb 2023
Homomorphic Self-Supervised Learning
Homomorphic Self-Supervised Learning
Thomas Anderson Keller
Xavier Suau
Luca Zappella
SSL
16
2
0
15 Nov 2022
Introducing topography in convolutional neural networks
Introducing topography in convolutional neural networks
Maxime Poli
Emmanuel Dupoux
Rachid Riad
12
0
0
28 Oct 2022
Unsupervised Learning of Equivariant Structure from Sequences
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
13
12
0
12 Oct 2022
FONDUE: an algorithm to find the optimal dimensionality of the latent
  representations of variational autoencoders
FONDUE: an algorithm to find the optimal dimensionality of the latent representations of variational autoencoders
Lisa Bonheme
M. Grzes
DRL
17
6
0
26 Sep 2022
Imaging with Equivariant Deep Learning
Imaging with Equivariant Deep Learning
Dongdong Chen
Mike Davies
Matthias Joachim Ehrhardt
Carola-Bibiane Schönlieb
Ferdia Sherry
Julián Tachella
6
27
0
05 Sep 2022
Learning Continuous Rotation Canonicalization with Radial Beam Sampling
Learning Continuous Rotation Canonicalization with Radial Beam Sampling
J. Schmidt
Sebastian Stober
6
1
0
21 Jun 2022
Learning with Capsules: A Survey
Learning with Capsules: A Survey
Fabio De Sousa Ribeiro
Kevin Duarte
Miles Everett
Georgios Leontidis
M. Shah
3DPC
MedIm
18
19
0
06 Jun 2022
Learning Invariant Weights in Neural Networks
Learning Invariant Weights in Neural Networks
Tycho F. A. van der Ouderaa
Mark van der Wilk
14
21
0
25 Feb 2022
Modeling Category-Selective Cortical Regions with Topographic
  Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Thomas Anderson Keller
Qinghe Gao
Max Welling
OOD
20
13
0
25 Oct 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
73
25
0
05 Sep 2019
1