Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.05458
Cited By
Which priors matter? Benchmarking models for learning latent dynamics
9 November 2021
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Which priors matter? Benchmarking models for learning latent dynamics"
24 / 24 papers shown
Title
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
28
0
0
24 Oct 2024
Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
Razmik Arman Khosrovian
Takaharu Yaguchi
Hiroaki Yoshimura
Takashi Matsubara
AI4CE
22
0
0
15 Oct 2024
Unsupervised Learning of Hybrid Latent Dynamics: A Learn-to-Identify Framework
Yubo Ye
Sumeet Vadhavkar
Xiajun Jiang
R. Missel
Huafeng Liu
Linwei Wang
31
0
0
13 Mar 2024
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
30
5
0
03 Mar 2024
Stability-Informed Initialization of Neural Ordinary Differential Equations
Theodor Westny
Arman Mohammadi
Daniel Jung
Erik Frisk
23
0
0
27 Nov 2023
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
27
1
0
22 Aug 2023
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
34
2
0
21 Jun 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
29
29
0
15 Jun 2023
Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE-nets
Aiqing Zhu
Tom S. Bertalan
Beibei Zhu
Yifa Tang
Ioannis G. Kevrekidis
21
5
0
31 Mar 2023
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
25
17
0
30 Nov 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
24
1
0
17 Nov 2022
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
Rembert Daems
Jeroen Taets
Francis Wyffels
Guillaume Crevecoeur
11
1
0
22 Jun 2022
CD
2
^2
2
: Fine-grained 3D Mesh Reconstruction With Twice Chamfer Distance
Rongfei Zeng
Mai Su
Ruiyun Yu
Xingwei Wang
3DV
18
2
0
01 Jun 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Learning Trajectories of Hamiltonian Systems with Neural Networks
Katsiaryna Haitsiukevich
Alexander Ilin
17
4
0
11 Apr 2022
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Michael I. Jordan
Tatjana Chavdarova
AAML
AI4CE
11
4
0
11 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
13
39
0
10 Feb 2022
Hamiltonian latent operators for content and motion disentanglement in image sequences
Asif Khan
Amos Storkey
16
2
0
02 Dec 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
31
39
0
05 Oct 2021
The Distracting Control Suite -- A Challenging Benchmark for Reinforcement Learning from Pixels
Austin Stone
Oscar Ramirez
K. Konolige
Rico Jonschkowski
129
101
0
07 Jan 2021
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
1