ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05458
  4. Cited By
Which priors matter? Benchmarking models for learning latent dynamics

Which priors matter? Benchmarking models for learning latent dynamics

9 November 2021
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
    AI4CE
ArXivPDFHTML

Papers citing "Which priors matter? Benchmarking models for learning latent dynamics"

24 / 24 papers shown
Title
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
28
0
0
24 Oct 2024
Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems
  across Domains
Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
Razmik Arman Khosrovian
Takaharu Yaguchi
Hiroaki Yoshimura
Takashi Matsubara
AI4CE
22
0
0
15 Oct 2024
Unsupervised Learning of Hybrid Latent Dynamics: A Learn-to-Identify
  Framework
Unsupervised Learning of Hybrid Latent Dynamics: A Learn-to-Identify Framework
Yubo Ye
Sumeet Vadhavkar
Xiajun Jiang
R. Missel
Huafeng Liu
Linwei Wang
34
0
0
13 Mar 2024
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear
  Gaussian state-space modeling
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
30
5
0
03 Mar 2024
Stability-Informed Initialization of Neural Ordinary Differential
  Equations
Stability-Informed Initialization of Neural Ordinary Differential Equations
Theodor Westny
Arman Mohammadi
Daniel Jung
Erik Frisk
23
0
0
27 Nov 2023
Hamiltonian GAN
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
29
1
0
22 Aug 2023
Learning Latent Dynamics via Invariant Decomposition and
  (Spatio-)Temporal Transformers
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
34
2
0
21 Jun 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks
  for Solving PDEs
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
29
29
0
15 Jun 2023
Implementation and (Inverse Modified) Error Analysis for
  implicitly-templated ODE-nets
Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE-nets
Aiqing Zhu
Tom S. Bertalan
Beibei Zhu
Yifa Tang
Ioannis G. Kevrekidis
21
5
0
31 Mar 2023
Knowledge-augmented Deep Learning and Its Applications: A Survey
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
25
17
0
30 Nov 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic
  Differential Equations
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
27
1
0
17 Nov 2022
FINDE: Neural Differential Equations for Finding and Preserving
  Invariant Quantities
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates
  from Images
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
Rembert Daems
Jeroen Taets
Francis Wyffels
Guillaume Crevecoeur
11
1
0
22 Jun 2022
CD$^2$: Fine-grained 3D Mesh Reconstruction With Twice Chamfer Distance
CD2^22: Fine-grained 3D Mesh Reconstruction With Twice Chamfer Distance
Rongfei Zeng
Mai Su
Ruiyun Yu
Xingwei Wang
3DV
18
2
0
01 Jun 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Learning Trajectories of Hamiltonian Systems with Neural Networks
Learning Trajectories of Hamiltonian Systems with Neural Networks
Katsiaryna Haitsiukevich
Alexander Ilin
19
4
0
11 Apr 2022
Improving Generalization via Uncertainty Driven Perturbations
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Michael I. Jordan
Tatjana Chavdarova
AAML
AI4CE
11
4
0
11 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
Hamiltonian latent operators for content and motion disentanglement in
  image sequences
Hamiltonian latent operators for content and motion disentanglement in image sequences
Asif Khan
Amos Storkey
16
2
0
02 Dec 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics
  Models
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
33
39
0
05 Oct 2021
The Distracting Control Suite -- A Challenging Benchmark for
  Reinforcement Learning from Pixels
The Distracting Control Suite -- A Challenging Benchmark for Reinforcement Learning from Pixels
Austin Stone
Oscar Ramirez
K. Konolige
Rico Jonschkowski
131
101
0
07 Jan 2021
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
1