Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.02831
Cited By
Anticorrelated Noise Injection for Improved Generalization
6 February 2022
Antonio Orvieto
Hans Kersting
F. Proske
Francis R. Bach
Aurélien Lucchi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Anticorrelated Noise Injection for Improved Generalization"
33 / 33 papers shown
Title
SASSHA: Sharpness-aware Adaptive Second-order Optimization with Stable Hessian Approximation
Dahun Shin
Dongyeop Lee
Jinseok Chung
Namhoon Lee
ODL
AAML
87
0
0
25 Feb 2025
Stochastic Gradient Descent Jittering for Inverse Problems: Alleviating the Accuracy-Robustness Tradeoff
Peimeng Guan
Mark A. Davenport
11
0
0
18 Oct 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
30
2
0
05 Jul 2024
Why is SAM Robust to Label Noise?
Christina Baek
Zico Kolter
Aditi Raghunathan
NoLa
AAML
20
9
0
06 May 2024
Singular-limit analysis of gradient descent with noise injection
Anna Shalova
André Schlichting
M. Peletier
27
1
0
18 Apr 2024
Communication-Efficient Distributed Learning with Local Immediate Error Compensation
Yifei Cheng
Li Shen
Linli Xu
Xun Qian
Shiwei Wu
Yiming Zhou
Tie Zhang
Dacheng Tao
Enhong Chen
16
0
0
19 Feb 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
34
1
0
29 Nov 2023
Evolutionary algorithms as an alternative to backpropagation for supervised training of Biophysical Neural Networks and Neural ODEs
James Hazelden
Yuhan Helena Liu
Eli Shlizerman
E. Shea-Brown
23
2
0
17 Nov 2023
PAC-tuning:Fine-tuning Pretrained Language Models with PAC-driven Perturbed Gradient Descent
Guang-Da Liu
Zhiyu Xue
Xitong Zhang
K. Johnson
Rongrong Wang
10
5
0
26 Oct 2023
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
15
1
0
25 Oct 2023
Enhancing Deep Neural Network Training Efficiency and Performance through Linear Prediction
Hejie Ying
Mengmeng Song
Yaohong Tang
S. Xiao
Zimin Xiao
11
8
0
17 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
12
13
0
10 Oct 2023
On the curvature of the loss landscape
Alison Pouplin
Hrittik Roy
Sidak Pal Singh
Georgios Arvanitidis
16
0
0
10 Jul 2023
Edge Intelligence Over the Air: Two Faces of Interference in Federated Learning
Zihan Chen
Howard H. Yang
Tony Q. S. Quek
27
9
0
17 Jun 2023
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
N. Lell
A. Scherp
20
1
0
15 Jun 2023
Decentralized SGD and Average-direction SAM are Asymptotically Equivalent
Tongtian Zhu
Fengxiang He
Kaixuan Chen
Mingli Song
Dacheng Tao
24
15
0
05 Jun 2023
Evolutionary Algorithms in the Light of SGD: Limit Equivalence, Minima Flatness, and Transfer Learning
Andrei Kucharavy
R. Guerraoui
Ljiljana Dolamic
22
1
0
20 May 2023
An Adaptive Policy to Employ Sharpness-Aware Minimization
Weisen Jiang
Hansi Yang
Yu Zhang
James T. Kwok
AAML
69
31
0
28 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
11
4
0
08 Mar 2023
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
6
2
0
08 Mar 2023
Utility-based Perturbed Gradient Descent: An Optimizer for Continual Learning
Mohamed Elsayed
A. R. Mahmood
CLL
13
5
0
07 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
17
8
0
02 Feb 2023
Implicit regularization in Heavy-ball momentum accelerated stochastic gradient descent
Avrajit Ghosh
He Lyu
Xitong Zhang
Rongrong Wang
23
20
0
02 Feb 2023
A Study on FGSM Adversarial Training for Neural Retrieval
Simon Lupart
S. Clinchant
AAML
12
7
0
25 Jan 2023
Improving Generalization of Pre-trained Language Models via Stochastic Weight Averaging
Peng Lu
I. Kobyzev
Mehdi Rezagholizadeh
Ahmad Rashid
A. Ghodsi
Philippe Langlais
MoMe
17
8
0
12 Dec 2022
Disentangling the Mechanisms Behind Implicit Regularization in SGD
Zachary Novack
Simran Kaur
Tanya Marwah
Saurabh Garg
Zachary Chase Lipton
FedML
12
2
0
29 Nov 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
25
18
0
30 Sep 2022
Explicit Regularization in Overparametrized Models via Noise Injection
Antonio Orvieto
Anant Raj
Hans Kersting
Francis R. Bach
8
25
0
09 Jun 2022
Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules
Yuhan Helena Liu
Arna Ghosh
Blake A. Richards
E. Shea-Brown
Guillaume Lajoie
6
9
0
02 Jun 2022
Special Properties of Gradient Descent with Large Learning Rates
Amirkeivan Mohtashami
Martin Jaggi
Sebastian U. Stich
MLT
11
7
0
30 May 2022
What Happens after SGD Reaches Zero Loss? --A Mathematical Framework
Zhiyuan Li
Tianhao Wang
Sanjeev Arora
MLT
77
98
0
13 Oct 2021
Shift-Curvature, SGD, and Generalization
Arwen V. Bradley
C. Gomez-Uribe
Manish Reddy Vuyyuru
14
2
0
21 Aug 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,696
0
15 Sep 2016
1