Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13320
Cited By
Towards Learning Universal Hyperparameter Optimizers with Transformers
26 May 2022
Yutian Chen
Xingyou Song
Chansoo Lee
Z. Wang
Qiuyi Zhang
David Dohan
Kazuya Kawakami
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Learning Universal Hyperparameter Optimizers with Transformers"
49 / 49 papers shown
Title
Put CASH on Bandits: A Max K-Armed Problem for Automated Machine Learning
Amir Rezaei Balef
Claire Vernade
Katharina Eggensperger
38
0
0
08 May 2025
A Model Zoo of Vision Transformers
Damian Falk
Léo Meynent
Florence Pfammatter
Konstantin Schurholt
Damian Borth
32
0
0
14 Apr 2025
QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Belinda Z. Li
Been Kim
Z. Wang
LRM
38
2
0
28 Mar 2025
Make Optimization Once and for All with Fine-grained Guidance
Mingjia Shi
Ruihan Lin
Xuxi Chen
Yuhao Zhou
Zezhen Ding
...
Tong Wang
Kai Wang
Zhangyang Wang
J. Zhang
Tianlong Chen
53
1
0
14 Mar 2025
PABBO: Preferential Amortized Black-Box Optimization
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
34
0
0
02 Mar 2025
EARL-BO: Reinforcement Learning for Multi-Step Lookahead, High-Dimensional Bayesian Optimization
Mujin Cheon
Jay H. Lee
Dong-Yeun Koh
Calvin Tsay
21
0
0
31 Oct 2024
Principled Bayesian Optimisation in Collaboration with Human Experts
Wenjie Xu
Masaki Adachi
Colin N. Jones
Michael A. Osborne
31
2
0
14 Oct 2024
Predicting from Strings: Language Model Embeddings for Bayesian Optimization
Tung Nguyen
Qiuyi Zhang
Bangding Yang
Chansoo Lee
J. Bornschein
Yingjie Miao
Sagi Perel
Yutian Chen
Xingyou Song
BDL
26
1
0
14 Oct 2024
Sample-Efficient Bayesian Optimization with Transfer Learning for Heterogeneous Search Spaces
Aryan Deshwal
Sait Cakmak
Yuhou Xia
David Eriksson
30
0
0
09 Sep 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
27
1
0
17 Aug 2024
Frontiers of Deep Learning: From Novel Application to Real-World Deployment
Rui Xie
VLM
35
1
0
19 Jul 2024
FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch
Virginia Aglietti
Ira Ktena
Jessica Schrouff
Eleni Sgouritsa
Francisco J. R. Ruiz
Alan Malek
Alexis Bellot
Silvia Chiappa
27
2
0
07 Jun 2024
Configurable Mirror Descent: Towards a Unification of Decision Making
Pengdeng Li
Shuxin Li
Chang Yang
Xinrun Wang
Shuyue Hu
Xiao Huang
Hau Chan
Bo An
27
1
0
20 May 2024
WEITS: A Wavelet-enhanced residual framework for interpretable time series forecasting
Ziyou Guo
Yan Sun
Tieru Wu
AI4TS
23
2
0
17 May 2024
Large Language Models for Tuning Evolution Strategies
Oliver Kramer
22
2
0
16 May 2024
Position: Leverage Foundational Models for Black-Box Optimization
Xingyou Song
Yingtao Tian
Robert Tjarko Lange
Chansoo Lee
Yujin Tang
Yutian Chen
38
5
0
06 May 2024
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization
Herilalaina Rakotoarison
Steven Adriaensen
Neeratyoy Mallik
Samir Garibov
Eddie Bergman
Frank Hutter
AI4CE
24
8
0
25 Apr 2024
Evolve Cost-aware Acquisition Functions Using Large Language Models
Yiming Yao
Fei Liu
Ji Cheng
Qingfu Zhang
36
7
0
25 Apr 2024
AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
Zhiqiang Tang
Haoyang Fang
Su Zhou
Taojiannan Yang
Zihan Zhong
Tony Hu
Katrin Kirchhoff
George Karypis
33
11
0
24 Apr 2024
Self-adaptive PSRO: Towards an Automatic Population-based Game Solver
Pengdeng Li
Shuxin Li
Chang Yang
Xinrun Wang
Xiao Huang
Hau Chan
Bo An
23
1
0
17 Apr 2024
tsGT: Stochastic Time Series Modeling With Transformer
Lukasz Kuciñski
Witold Drzewakowski
Mateusz Olko
Piotr Kozakowski
Lukasz Maziarka
Marta Emilia Nowakowska
Lukasz Kaiser
Piotr Milo's
38
1
0
08 Mar 2024
Large Language Model-Based Evolutionary Optimizer: Reasoning with elitism
Shuvayan Brahmachary
Subodh M. Joshi
Aniruddha Panda
K. Koneripalli
A. Sagotra
Harshil Patel
Ankush Sharma
Ameya Dilip Jagtap
Kaushic Kalyanaraman
LRM
33
17
0
04 Mar 2024
Principled Architecture-aware Scaling of Hyperparameters
Wuyang Chen
Junru Wu
Zhangyang Wang
Boris Hanin
AI4CE
30
1
0
27 Feb 2024
Reinforced In-Context Black-Box Optimization
Lei Song
Chenxiao Gao
Ke Xue
Chenyang Wu
Dong Li
Jianye Hao
Zongzhang Zhang
Chao Qian
27
3
0
27 Feb 2024
OmniPred: Language Models as Universal Regressors
Xingyou Song
Oscar Li
Chansoo Lee
Bangding Yang
Daiyi Peng
Sagi Perel
Yutian Chen
46
14
0
22 Feb 2024
Large Language Models to Enhance Bayesian Optimization
Tennison Liu
Nicolás Astorga
Nabeel Seedat
M. Schaar
58
45
0
06 Feb 2024
Is Mamba Capable of In-Context Learning?
Riccardo Grazzi
Julien N. Siems
Simon Schrodi
Thomas Brox
Frank Hutter
24
40
0
05 Feb 2024
Large Language Model Agent for Hyper-Parameter Optimization
Siyi Liu
Chen Gao
Yong Li
37
19
0
02 Feb 2024
Green Runner: A tool for efficient deep learning component selection
Jai Kannan
17
2
0
29 Jan 2024
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
29
51
0
07 Dec 2023
Large Language Model for Multi-objective Evolutionary Optimization
Fei Liu
Xi Lin
Zhenkun Wang
Shunyu Yao
Xialiang Tong
Mingxuan Yuan
Qingfu Zhang
19
37
0
19 Oct 2023
Transfer Learning for Bayesian Optimization on Heterogeneous Search Spaces
Maria-Irina Nicolae
Max Eisele
Z. Wang
20
8
0
28 Sep 2023
Large Language Models as Optimizers
Chengrun Yang
Xuezhi Wang
Yifeng Lu
Hanxiao Liu
Quoc V. Le
Denny Zhou
Xinyun Chen
ODL
21
373
0
07 Sep 2023
Efficient Bayesian Optimization with Deep Kernel Learning and Transformer Pre-trained on Multiple Heterogeneous Datasets
Wenlong Lyu
Shoubo Hu
Jie Chuai
Zhitang Chen
12
2
0
09 Aug 2023
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
Jia-Yu Pan
Stefan Falkner
Felix Berkenkamp
Joaquin Vanschoren
22
1
0
07 Jul 2023
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Alexander Tornede
Difan Deng
Theresa Eimer
Joseph Giovanelli
Aditya Mohan
...
Sarah Segel
Daphne Theodorakopoulos
Tanja Tornede
Henning Wachsmuth
Marius Lindauer
23
22
0
13 Jun 2023
PFNs4BO: In-Context Learning for Bayesian Optimization
Samuel G. Müller
Matthias Feurer
Noah Hollmann
Frank Hutter
17
34
0
27 May 2023
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
A. Maraval
Matthieu Zimmer
Antoine Grosnit
H. Ammar
BDL
25
15
0
25 May 2023
MLCopilot: Unleashing the Power of Large Language Models in Solving Machine Learning Tasks
Lei Zhang
Yuge Zhang
Kan Ren
Dongsheng Li
Yuqing Yang
LLMAG
17
35
0
28 Apr 2023
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Chris Xiaoxuan Lu
Tom Zahavy
Valentin Dalibard
Sebastian Flennerhag
14
34
0
08 Apr 2023
EvoPrompting: Language Models for Code-Level Neural Architecture Search
Angelica Chen
David Dohan
David R. So
VLM
LRM
11
82
0
28 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
17
9
0
02 Feb 2023
Human-Timescale Adaptation in an Open-Ended Task Space
Adaptive Agent Team
Jakob Bauer
Kate Baumli
Satinder Baveja
Feryal M. P. Behbahani
...
Jakub Sygnowski
K. Tuyls
Sarah York
Alexander Zacherl
Lei Zhang
LM&Ro
OffRL
AI4CE
LRM
30
108
0
18 Jan 2023
HyperBO+: Pre-training a universal prior for Bayesian optimization with hierarchical Gaussian processes
Z. Fan
Xinran Han
Z. Wang
19
4
0
20 Dec 2022
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
27
72
0
08 Dec 2022
In-context Reinforcement Learning with Algorithm Distillation
Michael Laskin
Luyu Wang
Junhyuk Oh
Emilio Parisotto
Stephen Spencer
...
Ethan A. Brooks
Maxime Gazeau
Himanshu Sahni
Satinder Singh
Volodymyr Mnih
OffRL
24
120
0
25 Oct 2022
Multi-step Planning for Automated Hyperparameter Optimization with OptFormer
Lucio Dery
A. Friesen
Nando de Freitas
MarcÁurelio Ranzato
Yutian Chen
25
0
0
10 Oct 2022
Pre-trained Gaussian processes for Bayesian optimization
Z. Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
47
40
0
16 Sep 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,944
0
04 May 2020
1