Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.07181
Cited By
To Aggregate or Not? Learning with Separate Noisy Labels
14 June 2022
Jiaheng Wei
Zhaowei Zhu
Tianyi Luo
Ehsan Amid
Abhishek Kumar
Yang Liu
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"To Aggregate or Not? Learning with Separate Noisy Labels"
29 / 29 papers shown
Title
Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation
Michal Lukasik
Lin Chen
Harikrishna Narasimhan
A. Menon
Wittawat Jitkrittum
Felix X. Yu
Sashank J. Reddi
Gang Fu
M. Bateni
Sanjiv Kumar
18
0
0
15 Apr 2025
Perils of Label Indeterminacy: A Case Study on Prediction of Neurological Recovery After Cardiac Arrest
Jakob Schoeffer
Maria De-Arteaga
Jonathan Elmer
50
0
0
05 Apr 2025
The Majority Vote Paradigm Shift: When Popular Meets Optimal
Antonio Purificato
Maria Sofia Bucarelli
Anil Kumar Nelakanti
Andrea Bacciu
Fabrizio Silvestri
Amin Mantrach
60
0
0
18 Feb 2025
Hands-On Tutorial: Labeling with LLM and Human-in-the-Loop
Ekaterina Artemova
Akim Tsvigun
Dominik Schlechtweg
Natalia Fedorova
Konstantin Chernyshev
Sergei Tilga
Boris Obmoroshev
SyDa
VLM
74
0
0
28 Jan 2025
Exploring the Influence of Label Aggregation on Minority Voices: Implications for Dataset Bias and Model Training
Mugdha Pandya
Nafise Sadat Moosavi
Diana Maynard
67
0
0
05 Dec 2024
LLM Unlearning via Loss Adjustment with Only Forget Data
Yaxuan Wang
Jiaheng Wei
Chris Liu
Jinlong Pang
Q. Liu
A. Shah
Yujia Bao
Yang Liu
Wei Wei
KELM
MU
32
6
0
14 Oct 2024
Bayesian Detector Combination for Object Detection with Crowdsourced Annotations
Zhi Qin Tan
Olga Isupova
Gustavo Carneiro
Xiatian Zhu
Yunpeng Li
ObjD
22
0
0
10 Jul 2024
Whose Preferences? Differences in Fairness Preferences and Their Impact on the Fairness of AI Utilizing Human Feedback
Emilia Agis Lerner
Florian E. Dorner
Elliott Ash
Naman Goel
23
1
0
09 Jun 2024
FedFixer: Mitigating Heterogeneous Label Noise in Federated Learning
Xinyuan Ji
Zhaowei Zhu
Wei Xi
Olga Gadyatskaya
Zilong Song
Yong Cai
Yang Liu
FedML
27
7
0
25 Mar 2024
Perceptual Quality-based Model Training under Annotator Label Uncertainty
Chenchao Zhou
M. Prabhushankar
Ghassan AlRegib
19
1
0
15 Mar 2024
Measuring and Reducing LLM Hallucination without Gold-Standard Answers
Jiaheng Wei
Yuanshun Yao
Jean-François Ton
Hongyi Guo
Andrew Estornell
Yang Liu
HILM
50
18
0
16 Feb 2024
Don't Label Twice: Quantity Beats Quality when Comparing Binary Classifiers on a Budget
Florian E. Dorner
Moritz Hardt
8
4
0
03 Feb 2024
Visual Objectification in Films: Towards a New AI Task for Video Interpretation
Julie Tores
L. Sassatelli
Hui-Yin Wu
Clement Bergman
Lea Andolfi
...
F. Precioso
Thierry Devars
Magali Guaresi
Virginie Julliard
Sarah Lecossais
25
2
0
24 Jan 2024
Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models
Zhaowei Zhu
Jialu Wang
Hao Cheng
Yang Liu
11
14
0
19 Nov 2023
Handwritten Text Recognition from Crowdsourced Annotations
Solène Tarride
Tristan Faine
Mélodie Boillet
Harold Mouchère
Christopher Kermorvant
19
4
0
19 Jun 2023
The Importance of Human-Labeled Data in the Era of LLMs
Yang Liu
ALM
8
8
0
18 Jun 2023
Transferring Annotator- and Instance-dependent Transition Matrix for Learning from Crowds
Shikun Li
Xiaobo Xia
Jiankang Deng
Shiming Ge
Tongliang Liu
11
15
0
05 Jun 2023
Label Smarter, Not Harder: CleverLabel for Faster Annotation of Ambiguous Image Classification with Higher Quality
Lars Schmarje
Vasco Grossmann
Tim Michels
Jakob Nazarenus
M. Santarossa
Claudius Zelenka
Reinhard Koch
21
3
0
22 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
14
12
0
22 May 2023
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction
Hongxin Wei
Huiping Zhuang
Renchunzi Xie
Lei Feng
Gang Niu
Bo An
Yixuan Li
VLM
NoLa
10
29
0
08 Dec 2022
On the Ramifications of Human Label Uncertainty
Chenchao Zhou
M. Prabhushankar
Ghassan AlRegib
17
4
0
10 Nov 2022
Human-in-the-Loop Mixup
Katherine M. Collins
Umang Bhatt
Weiyang Liu
Vihari Piratla
Ilia Sucholutsky
Bradley C. Love
Adrian Weller
17
7
0
02 Nov 2022
Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes
Zhaowei Zhu
Yuanshun Yao
Jiankai Sun
Hanguang Li
Y. Liu
6
21
0
06 Oct 2022
Eliciting and Learning with Soft Labels from Every Annotator
K. M. Collins
Umang Bhatt
Adrian Weller
8
44
0
02 Jul 2022
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Zhaowei Zhu
Jialu Wang
Yang Liu
NoLa
11
37
0
02 Feb 2022
Detecting Corrupted Labels Without Training a Model to Predict
Zhaowei Zhu
Zihao Dong
Yang Liu
NoLa
141
61
0
12 Oct 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning
Zhaowei Zhu
Tianyi Luo
Yang Liu
148
39
0
12 Oct 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
12
68
0
08 Jun 2021
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
303
488
0
05 Mar 2020
1