ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09453
  4. Cited By
e3nn: Euclidean Neural Networks

e3nn: Euclidean Neural Networks

18 July 2022
Mario Geiger
Tess E. Smidt
ArXivPDFHTML

Papers citing "e3nn: Euclidean Neural Networks"

46 / 96 papers shown
Title
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
35
1
0
06 Oct 2023
Discovering Symmetry Breaking in Physical Systems with Relaxed Group
  Convolution
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution
Rui Wang
E. Hofgard
Han Gao
Robin Walters
Tess E. Smidt
AI4CE
30
9
0
03 Oct 2023
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to
  Drug Discovery
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery
Alvaro Prat
Hisham Abdel-Aty
Gintautas Kamuntavicius
Tanya Paquet
P. Norvaisas
Piero Gasparotto
Roy Tal
18
2
0
22 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
26
15
0
15 Sep 2023
Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3)
  for Visual Robotic Manipulation
Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3) for Visual Robotic Manipulation
Hyunwoo Ryu
Jiwoo Kim
Hyun Seok Ahn
Junwoo Chang
Joohwan Seo
Taehan Kim
Yubin Kim
Chaewon Hwang
Jongeun Choi
R. Horowitz
DiffM
21
33
0
06 Sep 2023
Approximately Equivariant Graph Networks
Approximately Equivariant Graph Networks
Ningyuan Huang
Ron Levie
Soledad Villar
32
18
0
21 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
30
22
0
20 Aug 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
28
5
0
15 Jul 2023
Geometric Neural Diffusion Processes
Geometric Neural Diffusion Processes
Emile Mathieu
Vincent Dutordoir
M. Hutchinson
Valentin De Bortoli
Yee Whye Teh
Richard E. Turner
DiffM
32
8
0
11 Jul 2023
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive
  Models
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models
Michael R. Maser
Natasa Tagasovska
Jae Hyeon Lee
Andrew Watkins
31
0
0
20 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
31
19
0
15 Jun 2023
M$^2$Hub: Unlocking the Potential of Machine Learning for Materials
  Discovery
M2^22Hub: Unlocking the Potential of Machine Learning for Materials Discovery
Yuanqi Du
Yingheng Wang
Yin-Hua Huang
Jianan Canal Li
Yanqiao Zhu
T. Xie
Chenru Duan
J. Gregoire
Carla P. Gomes
32
6
0
14 Jun 2023
3D molecule generation by denoising voxel grids
3D molecule generation by denoising voxel grids
Pedro H. O. Pinheiro
Joshua Rackers
J. Kleinhenz
Michael R. Maser
Omar Mahmood
Andrew Watkins
Stephen Ra
Vishnu Sresht
Saeed Saremi
DiffM
34
20
0
13 Jun 2023
Is novelty predictable?
Is novelty predictable?
Clara Fannjiang
Jennifer Listgarten
AI4CE
17
14
0
01 Jun 2023
A General Framework for Equivariant Neural Networks on Reductive Lie
  Groups
A General Framework for Equivariant Neural Networks on Reductive Lie Groups
Ilyes Batatia
Mario Geiger
José M. Muñoz
Tess E. Smidt
L. Silberman
Christoph Ortner
AI4CE
27
11
0
31 May 2023
Group Invariant Global Pooling
Group Invariant Global Pooling
Kamil Bujel
Yonatan Gideoni
Chaitanya K. Joshi
Pietro Lio'
37
0
0
30 May 2023
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
  Networks
Learning Lagrangian Fluid Mechanics with E(333)-Equivariant Graph Neural Networks
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
AI4CE
22
5
0
24 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
19
81
0
23 May 2023
KineticNet: Deep learning a transferable kinetic energy functional for
  orbital-free density functional theory
KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory
Roman Remme
Tobias Kaczun
Maximilian Scheurer
A. Dreuw
Fred Hamprecht
20
9
0
08 May 2023
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant
  Magnets
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets
Y. Miyazaki
6
4
0
05 May 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
22
48
0
20 Apr 2023
EigenFold: Generative Protein Structure Prediction with Diffusion Models
EigenFold: Generative Protein Structure Prediction with Diffusion Models
Bowen Jing
Ezra Erives
Peter Pao-Huang
Gabriele Corso
Bonnie Berger
Tommi Jaakkola
DiffM
20
66
0
05 Apr 2023
Leveraging SO(3)-steerable convolutions for pose-robust semantic
  segmentation in 3D medical data
Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data
I. Díaz
Mario Geiger
Richard McKinley
3DPC
11
0
0
01 Mar 2023
CHGNet: Pretrained universal neural network potential for
  charge-informed atomistic modeling
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
B. Deng
Peichen Zhong
KyuJung Jun
Janosh Riebesell
K. Han
Christopher J. Bartel
Gerbrand Ceder
12
24
0
28 Feb 2023
Aligned Diffusion Schrödinger Bridges
Aligned Diffusion Schrödinger Bridges
Vignesh Ram Somnath
Matteo Pariset
Ya-Ping Hsieh
María Rodríguez Martínez
Andreas Krause
Charlotte Bunne
DiffM
100
30
0
22 Feb 2023
SE(3) symmetry lets graph neural networks learn arterial velocity
  estimation from small datasets
SE(3) symmetry lets graph neural networks learn arterial velocity estimation from small datasets
Julian Suk
Christoph Brune
J. Wolterink
25
10
0
17 Feb 2023
Fast evaluation of spherical harmonics with sphericart
Fast evaluation of spherical harmonics with sphericart
Filippo Bigi
Guillaume Fraux
N. Browning
Michele Ceriotti
16
8
0
16 Feb 2023
Geometric Clifford Algebra Networks
Geometric Clifford Algebra Networks
David Ruhe
Jayesh K. Gupta
Steven De Keninck
Max Welling
Johannes Brandstetter
AI4CE
18
32
0
13 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
18
78
0
07 Feb 2023
Towards fully covariant machine learning
Towards fully covariant machine learning
Soledad Villar
D. Hogg
Weichi Yao
George A. Kevrekidis
Bernhard Schölkopf
AI4CE
30
10
0
31 Jan 2023
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs
  Sparser Models
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
16
4
0
30 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
50
83
0
23 Jan 2023
Lorentz group equivariant autoencoders
Lorentz group equivariant autoencoders
Zichun Hao
Raghav Kansal
Javier Mauricio Duarte
N. Chernyavskaya
BDL
DRL
AI4CE
10
23
0
14 Dec 2022
Theory for Equivariant Quantum Neural Networks
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
27
88
0
16 Oct 2022
Hierarchical Learning in Euclidean Neural Networks
Hierarchical Learning in Euclidean Neural Networks
Joshua A. Rackers
P. Rao
28
1
0
10 Oct 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
408
0
04 Oct 2022
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational)
  Autoencoder in Fourier Space
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational) Autoencoder in Fourier Space
Gian Marco Visani
Michael N. Pun
Arman Angaji
Armita Nourmohammad
BDL
19
3
0
30 Sep 2022
Machine learning and invariant theory
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
31
15
0
29 Sep 2022
In Search of Projectively Equivariant Networks
In Search of Projectively Equivariant Networks
Georg Bökman
Axel Flinth
Fredrik Kahl
29
0
0
29 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
79
0
08 Sep 2022
Ab-initio quantum chemistry with neural-network wavefunctions
Ab-initio quantum chemistry with neural-network wavefunctions
J. Hermann
J. Spencer
Kenny Choo
Antonio Mezzacapo
W. Foulkes
David Pfau
Giuseppe Carleo
Frank Noé
AI4CE
23
73
0
26 Aug 2022
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance
  Matching
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching
Shengchao Liu
Hongyu Guo
Jian Tang
18
77
0
27 Jun 2022
Integrating Symmetry into Differentiable Planning with Steerable
  Convolutions
Integrating Symmetry into Differentiable Planning with Steerable Convolutions
Linfeng Zhao
Xu Zhu
Lingzhi Kong
Robin G. Walters
Lawson L. S. Wong
20
8
0
08 Jun 2022
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
192
1,232
0
08 Jan 2021
Previous
12