ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.05040
  4. Cited By
Cross-Domain Synthetic-to-Real In-the-Wild Depth and Normal Estimation
  for 3D Scene Understanding
v1v2v3 (latest)

Cross-Domain Synthetic-to-Real In-the-Wild Depth and Normal Estimation for 3D Scene Understanding

9 December 2022
Jay Bhanushali
Manivannan Muniyandi
Praneeth Chakravarthula
    3DPCViT
ArXiv (abs)PDFHTML

Papers citing "Cross-Domain Synthetic-to-Real In-the-Wild Depth and Normal Estimation for 3D Scene Understanding"

2 / 2 papers shown
Title
Multi-task Geometric Estimation of Depth and Surface Normal from
  Monocular 360° Images
Multi-task Geometric Estimation of Depth and Surface Normal from Monocular 360° Images
Kun Huang
Fang-Lue Zhang
Fangfang Zhang
Yu-Kun Lai
Paul L. Rosin
N. Dodgson
200
0
0
04 Nov 2024
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable ConvolutionsComputer Vision and Pattern Recognition (CVPR), 2016
François Chollet
MDEBDLPINN
2.6K
16,507
0
07 Oct 2016
1