Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.03350
Cited By
To Be Forgotten or To Be Fair: Unveiling Fairness Implications of Machine Unlearning Methods
7 February 2023
Dawen Zhang
Shidong Pan
Thong Hoang
Zhenchang Xing
Mark Staples
Xiwei Xu
Lina Yao
Qinghua Lu
Liming Zhu
MU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"To Be Forgotten or To Be Fair: Unveiling Fairness Implications of Machine Unlearning Methods"
3 / 3 papers shown
Title
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
102
130
0
07 Feb 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,082
0
24 Oct 2016
1