ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.03350
  4. Cited By
To Be Forgotten or To Be Fair: Unveiling Fairness Implications of
  Machine Unlearning Methods

To Be Forgotten or To Be Fair: Unveiling Fairness Implications of Machine Unlearning Methods

7 February 2023
Dawen Zhang
Shidong Pan
Thong Hoang
Zhenchang Xing
Mark Staples
Xiwei Xu
Lina Yao
Qinghua Lu
Liming Zhu
    MU
ArXivPDFHTML

Papers citing "To Be Forgotten or To Be Fair: Unveiling Fairness Implications of Machine Unlearning Methods"

3 / 3 papers shown
Title
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
102
130
0
07 Feb 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,203
0
23 Aug 2019
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,082
0
24 Oct 2016
1