Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.11024
Cited By
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
21 February 2023
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance"
14 / 14 papers shown
Title
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
36
0
0
06 May 2025
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Matthias Liero
Alexander Mielke
Oliver Tse
Jia Jie Zhu
29
0
0
29 Apr 2025
Kernel Approximation of Fisher-Rao Gradient Flows
Jia Jie Zhu
Alexander Mielke
44
5
0
27 Oct 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
51
5
0
25 Jun 2024
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
26
0
0
29 Apr 2024
Measure transport with kernel mean embeddings
Linfeng Wang
Nikolas Nusken
34
7
0
23 Jan 2024
Sampling in Unit Time with Kernel Fisher-Rao Flow
A. Maurais
Youssef Marzouk
26
12
0
08 Jan 2024
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
30
13
0
05 Oct 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
27
9
0
23 May 2023
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
34
22
0
01 Nov 2022
Optimal Neural Network Approximation of Wasserstein Gradient Direction via Convex Optimization
Yifei Wang
Peng Chen
Mert Pilanci
Wuchen Li
35
8
0
26 May 2022
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
55
68
0
09 Feb 2020
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
1